Neurocritical care
-
Neurogenic pulmonary edema (NPE) is a well-known complication of acute brain injury. Neurogenic stunned myocardium (NSM) occurs clinically in a significant subset of patients with NPE. A 49-year-old woman developed refractory cerebral vasospasm requiring angioplasty following a subarachnoid hemorrhage. ⋯ A 56-year-old woman developed NPE during complicated coil embolization of an internal carotid artery aneurysm. Cardiac function was normal, and the NPE resolved with a brief period of mechanical ventilation and diuresis. The delayed appearance of NSM and NPE during endovascular therapy in these patients implies a degree of risk for sympathetically mediated cardiopulmonary dysfunction during complex intracranial endovascular procedures.
-
Clinical Trial
Prediction of intracranial pressure from noninvasive transocular venous and arterial hemodynamic measurements: a pilot study.
Continuous measurement of intracranial pressure (ICP) requires the invasive placement of epidural, parenchymal, or intraventricular devices. For critical single-point assessments, lumbar puncture may not always be practical. An accurate, reliable, portable and noninvasive method to estimate absolute ICP remains an elusive goal. The arteries that perfuse and the vein that drains the orbit are exposed to the ambient ICP while coursing through the cerebrospinal fluid or optic nerve. ⋯ The feasibility to estimate ICP from transocular sonographic and dynamometric data is suggested by these preliminary data. Retinal arterial properties are important in modeling the effect of ICP on the venous outflow pressure. Our pilot results serve as a basis on which to conduct a larger prospective and blinded study.
-
Case Reports
Continuous bleeding from a basilar terminus aneurysm imaged with CT angiography and conventional angiography.
We report a case of fatal subarachnoid hemorrhage from nontraumatic rupture of an aneurysm at the basilar terminus in which both computed tomography angiography and conventional angiography showed evidence of active bleeding. The time period from initial ictus to CT angiography was 30-50 minutes and to conventional angiography was 120-140 minutes. This case illustrates that aneurysmal bleeding is not necessarily as brief as a few seconds and can last up to 30 to 50 minutes and perhaps longer. Continued bleeding from an intracranial aneurysm is a rare event that can be recognized using computed tomography angiography and likely indicates a poor prognosis.
-
Several neurological conditions may present to the emergency department (ED) with airway compromise or respiratory failure. The severity of respiratory involvement in these patients may not always be obvious. Proper pulmonary management can significantly reduce the respiratory complications associated with the morbidity and mortality of these patients. ⋯ Several precautions must be taken when using these drugs to minimize potentially fatal complications. Noninvasive positive pressure ventilation may obviate the need for intubation in a select population of patients. This article reviews airway management, with a particular emphasis on the use of RSI for common neurological problems presenting to the ED.
-
Traumatic brain injury (TBI) is a major cause of morbidity and mortality with widespread social, personal, and financial implications for those who survive. TBI is caused by four main events: motor vehicle accidents, sporting injuries, falls, and assaults. Similarly to international statistics, annual incidence reports for TBI in Australia are between 100 and 288 per 100,000. ⋯ Currently, indirect brain oximetry is used for cerebral oxygenation determination, which provides some information regarding global oxygenation levels. A newly developed oximetry technique, has shown promising results for the early detection of cerebral ischemia. ptiO2 monitoring provides a safe, easy, and sensitive method of regional brain oximetry, providing a greater understanding of neurophysiological derangements and the potential for correcting abnormal oxygenation earlier, thus improving patient outcome. This article reviews the current status of bedside monitoring for patients with TBI and considers whether ptiO2 has a role in the modern intensive care setting.