Neurocritical care
-
There is an increased focus on evaluating processes of care, particularly in the high acuity and cost environment of intensive care. Evaluation of neurocritical-specific care and evidence-based protocol implementation are needed to effectively determine optimal processes of care and effect on patient outcomes. General quality measures to evaluate intensive care unit (ICU) processes of care have been proposed; however, applicability of these measures in neurocritical care populations has not been established. ⋯ Similarly, implementation of evidence-based protocol-directed care can enhance outcome in the neurocritical care population. There is significant evidence to support suggested quality indicators for the general ICU population, but limited research regarding specific use in neurocritical care. Quality indices for neurocritical care have been proposed; however, additional research is needed to further validate measures.
-
Pressure autoregulation is an important hemodynamic mechanism that protects the brain against inappropriate fluctuations in cerebral blood flow in the face of changing cerebral perfusion pressure (CPP). Static autoregulation represents how far cerebrovascular resistance changes when CPP varies, and dynamic autoregulation represents how fast these changes happen. Both have been monitored in the setting of neurocritical care to aid prognostication and contribute to individualizing CPP targets in patients. ⋯ Management of patients at or near this optimal level of CPP is associated with better outcomes in traumatic brain injury. Many of these studies have utilized the concept of the pressure reactivity index, a correlation coefficient between ICP and mean arterial pressure. While further studies are needed, these data suggest that monitoring of autoregulation could aid prognostication and may help identify optimal CPP levels in individual patients.
-
Inflammation is an important part of the normal physiologic response to acute brain injury (ABI). How inflammation is manifest determines if it augments or hinders the resolution of ABI. Monitoring body temperature, the cellular arm of the inflammatory cascade, and inflammatory proteins may help guide therapy. ⋯ Second, when targeted temperature management is used, shivering should be monitored at least hourly. Finally, white blood cell levels and protein markers of inflammation may have a limited role in distinguishing infectious from noninfectious fever. Our understanding of optimal use of inflammation monitoring after ABI is limited currently but is an area of active investigation.
-
Anemia and bleeding are paramount concerns in neurocritical care and often relate to the severity of intracranial hemorrhage. Anemia is generally associated with worse outcomes, and efforts to minimize anemia through reduced volume of blood sampled are encouraged. ⋯ How best to monitor the effect of platelet transfusion or platelet-activating therapy is not well studied. For patients known to take novel oral anticoagulants, drug-specific coagulation tests before neurosurgical intervention are prudent.
-
Secondary ischemic injury is common after acute brain injury and can be evaluated with the use of neuromonitoring devices. This manuscript provides guidelines for the use of devices to monitor cerebral blood flow (CBF) in critically ill patients. A Medline search was conducted to address essential pre-specified questions related to the utility of CBF monitoring. ⋯ Data are lacking regarding ischemic thresholds for TDF or their correlation with ischemic injury and clinical outcomes. TCD and TCCS can be used to monitor CBF in the neurocritical care unit. Better and more developed methods of continuous CBF monitoring are needed to limit secondary ischemic injury in the neurocritical care unit.