Neurocritical care
-
The use of intracranial pressure (ICP) monitors is nearly synonymous with Neurocritical Care. Recent studies in nursing literature have report high levels of practice variance associated with ICP monitoring and treatment. There are no recent practice surveys to describe how critical care physicians and nurses who are familiar with ICP management provide care to their patients. ⋯ The results highlight the need to develop standardized approaches to measuring, monitoring, recording, and treating ICP.
-
Neurocritical care relies on the continuous, real-time measurement of numerous physiologic parameters. While our capability to obtain such measurements from patients has grown markedly with multimodal monitoring in many neurologic or neurosurgical intensive care units (ICUs), our ability to transform the raw data into actionable information is limited. One reason is that the proprietary nature of medical devices and software often prevents neuro-ICUs from capturing and centrally storing high-density data. ⋯ Although many different approaches to informatics are discussed and considered, here we focus on the Bayesian probabilistic paradigm. It quantifies the uncertainty inherent in neurocritical care instead of ignoring it, and formalizes the natural clinical thought process of updating prior beliefs using incoming patient data. We review this and other opportunities, as well as challenges, for the development and refinement of informatics tools in neurocritical care.
-
Comparative Study
Intermittent Versus Continuous Cerebrospinal Fluid Drainage Management in Adult Severe Traumatic Brain Injury: Assessment of Intracranial Pressure Burden.
There is clinical equipoise regarding whether neurointensive care unit management of external ventricular drains (EVD) in severe traumatic brain injury (TBI) should involve an open EVD, with continuous drainage of cerebrospinal fluid (CSF), versus a closed EVD, with intermittent opening as necessary to drain CSF. In a matched cohort design, we assessed the relative impact of continuous versus intermittent CSF drainage on intracranial pressure in the management of adult severe TBI. ⋯ Continuous CSF drainage via an open EVD seemed to be associated with more effective ICP control in the management of adult severe TBI.
-
Cerebral blood flow (CBF) measurements are helpful in managing patients with traumatic brain injury (TBI), and testing the cerebrovascular reactivity to CO(2) provides information about injury severity and outcome. The complexity and potential hazard of performing CBF measurements limits routine clinical use. An alternative approach is to measure the CBF velocity using bedside, non-invasive, and transcranial Doppler (TCD) sonography. This study was performed to investigate if TCD is a useful alternative to CBF in patients with severe TBI. ⋯ Although the lack of statistical correlation between the calculated reactivity indices, there was a significant decrease in TCD-mean flow velocity and a decrease in CBF with hypocapnia. CBF and TCD do not seem to be directly interchangeable in determining CO(2)-reactivity in TBI, despite both methods demonstrating deviation in the same direction during hypocapnia. TCD and CBF measurements both provide useful information on cerebrovascular events which, although not interchangeable, may complement each other in clinical scenarios.
-
Understanding the dynamic relationship between cerebral blood flow (CBF) and the circulation of cerebrospinal fluid (CSF) can facilitate management of cerebral pathologies. For this reason, various hydrodynamic models have been introduced in order to simulate the phenomena governing the interaction between CBF and CSF. The identification of hydrodynamic models requires an array of signals as input, with the most common of them being arterial blood pressure, intracranial pressure, and cerebral blood flow velocity; monitoring all of them is considered as a standard practice in neurointensive care. ⋯ This review presents model-derived indices that describe cerebrovascular phenomena, the nature of which is both physiological (carbon dioxide reactivity and arterial hypotension) and pathological (cerebral artery stenosis, intracranial hypertension, and cerebral vasospasm). In a neurointensive environment, real-time monitoring of a patient with these indices may be able to provide a detection of the onset of a cerebrovascular phenomenon, which could have otherwise been missed. This potentially "early warning" indicator may then prove to be important for the therapeutic management of the patient.