Neurocritical care
-
Decompressive hemicraniectomy (DHC) for space-occupying cerebral infarction in older adults remains controversial, and there are limited nationwide data evaluating the outcomes after craniectomy for stroke by patient age. ⋯ In this nationwide analysis, DHC was associated with reduced mortality regardless of patient age, including among those aged greater than 70 years. However, patients aged greater than 60 years treated surgically experienced higher odds of mortality (32.4 %), discharge to institutional care (47.1 %), and a poor outcome (77.0 %) compared with younger patients.
-
Cerebral critical closing pressure (CrCP) is the level of arterial blood pressure (ABP) at which small brain vessels close and blood flow stops. This value is always greater than intracranial pressure (ICP). The difference between CrCP and ICP is explained by the tone of the small cerebral vessels (wall tension). CrCP value is used in several dynamic cerebral autoregulation models. However, the different methods for calculation of CrCP show frequent negative values. These findings are viewed as a methodological limitation. We intended to evaluate CrCP in patients with severe traumatic brain injury (TBI) with a new multiparameter impedance-based model and compare it with results found earlier using a transcranial Doppler (TCD)-ABP pulse waveform-based method. ⋯ M2 results in positive values of CrCP, higher than ICP, and are physiologically interpretable.
-
Refractory status epilepticus (RSE) is often treated with continuous intravenous medications with the goal of EEG burst suppression. Standard advice is to titrate medications to at least 10-s interburst intervals; however, this has not been shown to improve outcome. We examined EEG characteristics in patients treated with IV anesthetic therapy (IVAT) for RSE to determine which EEG characteristics were associated with successful lifting of IVAT (i.e., without recurrence of status epilepticus). ⋯ The length of interburst intervals and burst suppression did not predict successful termination of RSE in this small cohort. This may suggest that EEG characteristics, rather a strict interburst interval goal, could guide IVAT for RSE.
-
Therapeutic hypothermia (i.e., temperature management) is an effective option for improving survival and neurological outcome after cardiac arrest and is potentially useful for the care of the critically ill neurological patient. We analyzed the feasibility of a device to control the temperature of the brain by controlling the temperature of the blood flowing through the neck. ⋯ This work demonstrates the feasibility of using a non-invasive method to induce brain hypothermia using a portable collar. This device demonstrated an optimal safety profile and represents a potentially useful method for the administration of mild hypothermia and temperature control (i.e., treatment of hyperpyrexia) in cardiac arrest and critically ill neurologic patients.