Neurocritical care
-
For years, the use of ketamine as an anesthetic to patients suffering from acute brain injury has been debated because of its possible deleterious effects on the cerebral circulation and thus on the cerebral perfusion. Early studies suggested that ketamine could increase the intracranial pressure thus lowering the cerebral perfusion and hence reduce the oxygen supply to the injured brain. However, more recent studies are less conclusive and might even indicate that patients with acute brain injury could benefit from ketamine sedation. ⋯ The overall level of evidence concerning the use of ketamine in brain injury is low. Only two studies found a small increase in intracranial pressure, while two small studies found decreased levels of intracranial pressure following ketamine administration. We found no evidence of harm during ketamine use in patients suffering from acute brain injury.
-
Our previous study found that mild hypothermia (MH) after resuscitation reduced cerebral microcirculation, but the mechanism was not elucidated. The aim of this study was to clarify changes of endothelin-1 (ET-1) and nitric oxide (NO) systems in brain tissue during hypothermia after resuscitation. ⋯ The ET-1 system is activated, while inducible NOS is inhibited in brain tissue during MH after resuscitation.
-
The intracerebral hemorrhage (ICH) score provides an estimate of 30-day mortality for patients with intracerebral hemorrhage in order to guide research protocols and clinical decision making. Several variations of such scoring systems have attempted to optimize its prognostic value. More recently, minimally invasive surgical techniques are increasingly being used with promising results. As more patients become candidates for surgical intervention, there is a need to re-discuss the best methods for predicting outcomes with or without surgical intervention. ⋯ We provide the most comprehensive review to date of prognostic grading scales for patients with intracerebral hemorrhage. Current prognostic tools for patients with intracerebral hemorrhage remain limited and may overestimate risk of a poor outcome. As minimally invasive surgical techniques are developed, prognostic scales should account for surgical candidacy and outcomes.
-
As the COVID-19 pandemic developed, reports of neurological dysfunctions spanning the central and peripheral nervous systems have emerged. The spectrum of acute neurological dysfunctions may implicate direct viral invasion, para-infectious complications, neurological manifestations of systemic diseases, or co-incident neurological dysfunction in the context of high SARS-CoV-2 prevalence. A rapid and pragmatic approach to understanding the prevalence, phenotypes, pathophysiology and prognostic implications of COVID-19 neurological syndromes is urgently needed. ⋯ This is one of the first large-scale global research collaboratives urgently assembled to evaluate acute neurological events in the context of a pandemic. The innovative and pragmatic tiered study approach has allowed for rapid recruitment and activation of numerous sites across the world-an approach essential to capture real-time critical neurological data to inform treatment strategies in this pandemic crisis.
-
Observational Study
High Serum DNA and RNA Oxidative Damage in Non-surviving Patients with Spontaneous Intracerebral Hemorrhage.
One study found higher leukocytes 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in patients with spontaneous intracerebral hemorrhage (ICH) than in healthy subjects due to the oxidation of guanosine from deoxyribonucleic acid (DNA). The objective of this study was to determine whether there is an association between oxidative damage of serum DNA and ribonucleic acid (RNA) and mortality in patients with ICH. ⋯ The novel and most important finding of our study was that serum OGS levels in ICH patients are associated with mortality.