Neurocritical care
-
Despite increasing use in hemorrhagic shock (HS), whole blood (WB) resuscitation for polytrauma with traumatic brain injury (TBI) is largely unexplored. Current TBI guidelines recommend crystalloid for prehospital resuscitation. Although WB outperforms lactated Ringer's (LR) in increasing mean arterial pressure (MAP) in TBI + HS models, effects on brain tissue oxygenation (PbtO2), and optimal MAP remain undefined. ⋯ WB resuscitation after TBI + HS results in robust improvements in brain oxygenation while minimizing fluid volume when compared to standard LR resuscitation. WB resuscitation may allow for a lower prehospital MAP without compromising brain oxygenation when compared to LR resuscitation. Further studies evaluating the effects of these physiologic benefits on outcome after TBI with HS are warranted, to eventually inform clinical trials.
-
Current electroencephalography (EEG) practice relies on interpretation by expert neurologists, which introduces diagnostic and therapeutic delays that can impact patients' clinical outcomes. As EEG practice expands, these experts are becoming increasingly limited resources. A highly sensitive and specific automated seizure detection system would streamline practice and expedite appropriate management for patients with possible nonconvulsive seizures. We aimed to test the performance of a recently FDA-cleared machine learning method (Claritγ, Ceribell Inc.) that measures the burden of seizure activity in real time and generates bedside alerts for possible status epilepticus (SE). ⋯ Ruling out seizures accurately in a large proportion of cases can help prevent unnecessary or aggressive over-treatment in critical care settings, where empiric treatment with antiseizure medications is currently prevalent. Claritγ's high sensitivity for SE and high negative predictive value for cases without epileptiform activity make it a useful tool for triaging treatment and the need for urgent neurological consultation.
-
Observational Study
Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study.
Cerebral autoregulation (CA) impairment may pose a risk factor for neurological complications among children supported by extracorporeal membrane oxygenation (ECMO). Our first objective was to investigate the feasibility of CA continuous monitoring during ECMO treatment and to describe its evolution over time. The second objective was to analyze the association between CA impairment and neurological outcome. ⋯ CA assessment is feasible in pediatric ECMO. The first 24 h following ECMO represents the most critical period regarding CA. Impaired autoregulation is significantly more severe among patients who experience ANE.
-
Observational Study
Intensive Care Unit-Acquired Weakness in Children: A Prospective Observational Study Using Simplified Serial Electrophysiological Testing (PEDCIMP Study).
To study the incidence and time of onset of intensive care unit-acquired weakness in a prospective cohort of children (2-12 years) by serial simplified electrophysiological assessment (Pediatric Critical Illness Myopathy Polyneuropathy study, PEDCIMP). ⋯ Children admitted with PRISM > 20 have a very low incidence of intensive care unit-acquired weakness by serial clinical and abbreviated electrophysiological evaluation.
-
Spreading depolarizations (SDs) have been described in patients with ischemic and haemorrhagic stroke, traumatic brain injury, and migraine with aura, among other conditions. The exact pathophysiological mechanism of SDs is not yet fully established. Our aim in this study was to evaluate the relationship between the electrocorticography (ECoG) findings of SDs and/or epileptiform activity and subsequent epilepsy and electroclinical outcome. ⋯ SDs are common in the cortex of ischemic or traumatic penumbra. Our study suggests an association between the presence of SDs in the acute phase and worse long-term outcome, although no association with subsequent epilepsy was found. More comprehensive studies, involving ECoG and EEG could help determine their association with epileptogenesis.