Neurocritical care
-
Patients with severe acute brain injury have a high risk of a poor clinical outcome due to primary and secondary brain injury. Ketamine reportedly inhibits cortical spreading depolarization, an electrophysiological phenomenon that has been associated with secondary brain injury, making ketamine potentially attractive for patients with severe acute brain injury. The aim of this systematic review is to explore the current literature regarding ketamine for patients with severe acute brain injury. ⋯ The level of evidence regarding the effects of ketamine on functional outcome and serious adverse events in patients with severe acute brain injury is very low. Ketamine may markedly, modestly, or not at all affect these outcomes. Large randomized clinical trials at low risk of bias are needed.
-
The objective of this study was to investigate the value of mismatch negativity (MMN) and P300 event-related potentials for discriminating the consciousness state and predicting improvement of consciousness at 6 months in patients with coma and other disorders of consciousness (DOC). ⋯ MMN and P300 may help discriminate among coma, UWS, and MCS, but not between patients with MCS- and patients with MCS+ . The MMN amplitude, P300 amplitude, and especially combined MMN-P300 amplitude at 6 months may be interesting predictors of consciousness improvement at 6 months in patients with DOC.
-
Identical bursts on electroencephalography (EEG) are considered a specific predictor of poor outcomes in cardiac arrest, but its relationship with structural brain injury severity on magnetic resonance imaging (MRI) is not known. ⋯ Burst similarity on EEG after cardiac arrest may be associated with acute brain injury severity on MRI. This association was time dependent when measured using DTW.
-
In intensive care, delirium is frequent, prolongs the stay, increases health care costs, and worsens patient outcome. Several substances and medications as well as stress can impact the risk of delirium; however, assessment of previous exposure to psychotropic agents and stress by self-reports or third-party information is not always reliable. Hair analysis can be used to objectively assess medication and substance use (including chronic alcohol consumption), and allows for the determination of stress-related long-term changes in steroid hormones and endocannabinoids. ⋯ Hair analysis provides crucial and otherwise unattainable information regarding chronic stress and the use of psychotropic substances and medications. Undisclosed antidepressant/antipsychotic use or intense chronic alcohol consumption is susceptible to treatment (continuation of medication or provision of low-dose benzodiazepines in case of alcohol). Chronic stress can be evaluated using stress markers and endocannabinoids in hair, potentially allowing for personalized delirium risk stratification and preventive measures.