Neurocritical care
-
Delayed cerebral ischemia (DCI) is one of the main determinants of clinical outcome after aneurysmal subarachnoid hemorrhage (SAH). The classical description of risk for DCI over time is currently based on the outdated concept of angiographic vasospasm. The goal of this study was to assess the temporal risk profile of DCI, defined by extended clinical and radiological criteria, as well as the impact the time point of DCI onset has on clinical outcome. ⋯ The risk profile of DCI over time mirrors the description of angiographic vasospasm; however, it comes with an added timely delay of 1 to 2 days. Early occurrence of DCI (before day 7) is associated with a higher infarct load and DCI-related mortality. Although the exact causal relationship remains to be determined, the time point of DCI onset may serve as an independent prognostic criterion in decision-making.
-
Aneurysmal subarachnoid hemorrhage (aSAH) leads to a robust systemic inflammatory response. We hypothesized that an early systemic glycolytic shift occurs after aSAH, resulting in a unique metabolic signature and affecting systemic inflammation. ⋯ Aneurysmal subarachnoid hemorrhage results in a unique pattern of plasma metabolites, indicating a shift toward glycolysis. Higher levels of fumarate and lower levels of citrate were associated with better functional outcomes. These metabolites may represent targets to improve metabolism after aSAH.
-
Most existing studies have focused on the correlation between white matter lesion (WML) and baseline intraventricular hemorrhage (IVH) in patients with intracerebral hemorrhage (ICH), whereas few studies have investigated the relationship between WML severity and delayed IVH after admission. This study aimed to investigate the correlation between WML severity and delayed IVH and to verify the association between WML and baseline IVH. ⋯ Moderate-severe WML was an independent risk factor for delayed IVH as well as baseline IVH.
-
Brain oxygenation improvement is a sought-after goal in neurocritical care patients. Previously, we have shown that cerebral blood flow improvement by cardiac-gated intracranial pressure (ICP) modulation using an intracranial pulsating balloon is feasible in a swine model. We sought to explore specific ICP modulation protocols to assess the feasibility of influencing brain oxygenation. ⋯ Intracranial cardiac-gated balloon pump activation can influence cerebral oxygenation and raise PbtO2 above threshold values. This study supports the concept of late-diastolic pressure rise, coupled with early-systolic pressure drop, as a potential effector of flow augmentation leading to improve brain tissue oxygenation. Further studies are warranted to assess the translational potential of using an intracranial cardiac-gated balloon pump device to improve brain tissue oxygenation.