Neurocritical care
-
Guidelines recommend evaluation for electrographic seizures in neonates and children at risk, including after cardiopulmonary bypass (CPB). Although initial research using screening electroencephalograms (EEGs) in infants after CPB found a 21% seizure incidence, more recent work reports seizure incidences ranging 3-12%. Deep hypothermic cardiac arrest was associated with increased seizure risk in prior reports but is uncommon at our institution and less widely used in contemporary practice. This study seeks to establish the incidence of seizures among infants following CPB in the absence of deep hypothermic cardiac arrest and to identify additional risk factors for seizures via a prediction model. ⋯ Seizure incidence was similar to recent estimates even in the absence of deep hypothermic cardiac arrest. By employing random forest analysis, we were able to identify novel risk factors for postoperative seizure in this population and generate a robust model of seizure risk. Further work to validate our model in an external population is needed.
-
Observational Study
Intracerebral Iron Accumulation may be Associated with Secondary Brain Injury in Patients with Poor Grade Subarachnoid Hemorrhage.
The amount of intracranial blood is a strong predictor of poor outcome after subarachnoid hemorrhage (SAH). Here, we aimed to measure iron concentrations in the cerebral white matter, using the cerebral microdialysis (CMD) technique, and to associate iron levels with the local metabolic profile, complications, and functional outcome. ⋯ This study suggests that iron accumulates in the cerebral white matter in patients with poor grade SAH. These findings may support trials aiming to scavenger brain extracellular iron based on the hypothesis that iron-mediated neurotoxicity may contribute to acute and secondary brain injury following SAH.
-
Cerebrovascular autoregulation (CA) is a protective mechanism that enables the cerebral vasculature to automodulate tone in response to changes in cerebral perfusion pressure to ensure constant levels of cerebral blood flow (CBF) and oxygen delivery. CA can be impaired after neurological injury and contributes to secondary brain injury. In this study, we report novel impedance indices using trans-ocular brain impedance (TOBI) during controlled systemic hemorrhage and hypotension to assess CA in comparison with pressure reactivity index (PRx). ⋯ TOBI indices appear to track changes in PRx and hemodynamics that affect CA during hemorrhage-induced hypotension. TOBI may offer a suitable, less invasive surrogate to PRx for monitoring and assessing CA.
-
Meta-analyses of observational studies report a 1.1-1.7% pooled risk of stroke among patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requiring hospitalization, but consultations for stroke and reperfusion procedures have decreased during the outbreak that occurred during the first half of the year 2020. It is still unclear whether a true increase in the risk of stroke exists among patients with coronavirus disease 2019 (COVID-19). In-hospital ischemic stroke (IHIS) complicated the 0.04-0.06% of all admissions in the pre-COVID-19 era, but its incidence has not been assessed among inpatients with COVID-19. We aimed to compare IHIS incidence among patients with SARS-CoV-2 infection with that of inpatients with non-COVID-19 illnesses from the same outbreak period and from previous periods. ⋯ SARS-CoV-2 outbreak was associated with an increase in the incidence of IHIS when compared with inpatients from a historical cohort. Viral infection itself may be related to the increased risk of IHIS among patients with COVID-19, but in view of our results from the 20NCC, it is likely that other factors, such as hospital saturation and overwhelming of health systems, may have played a role in the increased frequency of IHIS.
-
We want to investigate the effect of aquaporin-4 (AQP4) on cerebral edema induced by ischemic stroke in rats and explore whether inhibiting the expression of AQP4 through acetazolamide (AZA) could attenuate brain edema and protect cerebral function. ⋯ The expression of AQP4 was closely related to cerebral edema induced by ischemic stroke. Decreasing the expression of AQP4 mRNA by AZA administration can effectively relieve cerebral edema and decrease cerebral pathological damage.