Neurocritical care
-
Randomized Controlled Trial
Impact of Therapeutic Interventions on Cerebral Autoregulatory Function Following Severe Traumatic Brain Injury: A Secondary Analysis of the BOOST-II Study.
The Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase II randomized controlled trial used a tier-based management protocol based on brain tissue oxygen (PbtO2) and intracranial pressure (ICP) monitoring to reduce brain tissue hypoxia after severe traumatic brain injury. We performed a secondary analysis to explore the relationship between brain tissue hypoxia, blood pressure (BP), and interventions to improve cerebral perfusion pressure (CPP). We hypothesized that BP management below the lower limit of autoregulation would lead to cerebral hypoperfusion and brain tissue hypoxia that could be improved with hemodynamic augmentation. ⋯ Our analysis suggests that brain tissue hypoxia is associated with cerebral hypoperfusion characterized by increased time with CPP below the lower limit of autoregulation. Interventions to increase CPP appear to improve autoregulation. Further studies are needed to validate the importance of autoregulation as a modifiable variable with the potential to improve outcomes.
-
Elevated intracranial pressure (ICP) is a neurological emergency in patients with acute brain injuries. Such a state requires immediate and effective interventions to prevent potential neurological deterioration. Current clinical guidelines recommend hypertonic saline (HTS) and mannitol as first-line therapeutic agents. Notably, HTS is conventionally administered through central venous catheters (CVCs), which may introduce delays in treatment due to the complexities associated with CVC placement. These delays can critically affect patient outcomes, necessitating the exploration of more rapid therapeutic avenues. This study aimed to investigate the safety and effect on ICP of administering rapid boluses of 3% HTS via peripheral intravenous (PIV) catheters. ⋯ Rapid bolus administration of 3% HTS via PIV catheters presents itself as a relatively safe approach to treat neurological emergencies. Its implementation could provide an invaluable alternative to the traditional CVC-based administration, potentially minimizing CVC-associated complications and expediting life-saving interventions for patients with neurological emergencies, especially in the field and emergency department settings.
-
Observational Study
Cognitive, Mental Health, Functional, and Quality of Life Outcomes 1 Year After Spontaneous Subarachnoid Hemorrhage: A Prospective Observational Study.
Patients with spontaneous subarachnoid hemorrhage (SAH) frequently encounter cognitive dysfunction and mental health issues with negative effects on health-related quality of life (HR-QoL). Here, we aimed to describe the prevalence of cognitive deficits, mental health problems, and HR-QoL impairments 1 year after SAH. ⋯ Most patients with SAH have cognitive deficits and mental health issues 1 year after SAH. These deficits impair patients' quality of life.
-
Central nervous system (CNS) injury following initiation of veno-venous extracorporeal membrane oxygenation (VV-ECMO) is common. An acute decrease in partial pressure of arterial carbon dioxide (PaCO2) following VV-ECMO initiation has been suggested as an etiological factor, but the challenges of diagnosing CNS injuries has made discerning a relationship between PaCO2 and CNS injury difficult. ⋯ Although rapid decreases in PaCO2 following initiation of VV-ECMO were slightly greater in patients who had CNS injuries versus those without, data overlap and absence of relationships between PaCO2 and brain biomarkers suggests other pathophysiologic variables are likely at play.
-
Optimization of ventilatory settings is challenging for patients in the neurointensive care unit, requiring a balance between precise gas exchange control, lung protection, and managing hemodynamic effects of positive pressure ventilation. Although recruitment maneuvers (RMs) may enhance oxygenation, they could also exert profound undesirable systemic impacts. ⋯ In patients with acute brain injury, RMs appear to have adverse effects on cerebral hemodynamics. These findings might be partially explained by RM's impact on RV function. Further advanced echocardiography monitoring is required to prove this hypothesis.