Neurocritical care
-
Pressure autoregulation is an important hemodynamic mechanism that protects the brain against inappropriate fluctuations in cerebral blood flow in the face of changing cerebral perfusion pressure (CPP). Static autoregulation represents how far cerebrovascular resistance changes when CPP varies, and dynamic autoregulation represents how fast these changes happen. Both have been monitored in the setting of neurocritical care to aid prognostication and contribute to individualizing CPP targets in patients. ⋯ Management of patients at or near this optimal level of CPP is associated with better outcomes in traumatic brain injury. Many of these studies have utilized the concept of the pressure reactivity index, a correlation coefficient between ICP and mean arterial pressure. While further studies are needed, these data suggest that monitoring of autoregulation could aid prognostication and may help identify optimal CPP levels in individual patients.
-
Inflammation is an important part of the normal physiologic response to acute brain injury (ABI). How inflammation is manifest determines if it augments or hinders the resolution of ABI. Monitoring body temperature, the cellular arm of the inflammatory cascade, and inflammatory proteins may help guide therapy. ⋯ Second, when targeted temperature management is used, shivering should be monitored at least hourly. Finally, white blood cell levels and protein markers of inflammation may have a limited role in distinguishing infectious from noninfectious fever. Our understanding of optimal use of inflammation monitoring after ABI is limited currently but is an area of active investigation.
-
Anemia and bleeding are paramount concerns in neurocritical care and often relate to the severity of intracranial hemorrhage. Anemia is generally associated with worse outcomes, and efforts to minimize anemia through reduced volume of blood sampled are encouraged. ⋯ How best to monitor the effect of platelet transfusion or platelet-activating therapy is not well studied. For patients known to take novel oral anticoagulants, drug-specific coagulation tests before neurosurgical intervention are prudent.
-
Secondary ischemic injury is common after acute brain injury and can be evaluated with the use of neuromonitoring devices. This manuscript provides guidelines for the use of devices to monitor cerebral blood flow (CBF) in critically ill patients. A Medline search was conducted to address essential pre-specified questions related to the utility of CBF monitoring. ⋯ Data are lacking regarding ischemic thresholds for TDF or their correlation with ischemic injury and clinical outcomes. TCD and TCCS can be used to monitor CBF in the neurocritical care unit. Better and more developed methods of continuous CBF monitoring are needed to limit secondary ischemic injury in the neurocritical care unit.
-
The burden of disease and so the need for care is often greater at hospitals in emerging economies. This is compounded by frequent restrictions in the delivery of good quality clinical care due to resource limitations. However, there is substantial heterogeneity in this economically defined group, such that advanced brain monitoring is routinely practiced at certain centers that have an interest in neurocritical care. ⋯ Evidence suggests that potential benefits of multimodality monitoring depend on an appropriate environment and clinical expertise. There is no evidence to suggest that patients in LAMICs where such resources exist should be treated any differently to patients from HICs. The potential for outcome benefits in LAMICs is arguably greater in absolute terms because of the large burden of disease; however, the relative cost/benefit ratio of such monitoring in this setting must be viewed in context of the overall priorities in delivering health care at individual institutions.