Neurocritical care
-
Neuromonitoring represents a cornerstone in the comprehensive management of patients with traumatic brain injury (TBI), allowing for early detection of complications such as increased intracranial pressure (ICP) [1]. This has led to a search for noninvasive modalities that are reliable and deployable at bedside. Among these, ultrasonographic optic nerve sheath diameter (ONSD) measurement is a strong contender, estimating ICP by quantifying the distension of the optic nerve at higher ICP values. Thus, this scoping review seeks to describe the existing evidence for the use of ONSD in estimating ICP in adult TBI patients as compared to gold-standard invasive methods. ⋯ Overall, ONSD exhibits great test accuracy and has a strong, almost linear correlation with invasive methods. Thus, ONSD should be considered one of the most effective noninvasive techniques for ICP estimation in TBI patients.
-
The use of multimodal neuromonitoring in pediatrics is in its infancy relative to adult neurocritical care. Multimodal neuromonitoring encompasses the amalgamation of information from multiple individual neuromonitoring devices to gain a more comprehensive understanding of the condition of the brain. It allows for adaptation to the changing state of the brain throughout various stages of injury with potential to individualize and optimize therapies. ⋯ The possible benefits of multimodal neuromonitoring are immense and have great potential to advance the field of pediatric neurocritical care and the health of critically ill children.
-
The advent of neurotechnologies including advanced functional magnetic resonance imaging and electroencephalography to detect states of awareness not detectable by traditional bedside neurobehavioral techniques (i.e., covert consciousness) promises to transform neuroscience research and clinical practice for patients with brain injury. As these interventions progress from research tools into actionable, guideline-endorsed clinical tests, ethical guidance for clinicians on how to responsibly communicate the sensitive results they yield is crucial yet remains underdeveloped. Drawing on insights from empirical and theoretical neuroethics research and our clinical experience with advanced neurotechnologies to detect consciousness in behaviorally unresponsive patients, we critically evaluate ethical promises and perils associated with disclosing the results of clinical covert consciousness assessments and describe a semistructured approach to responsible data sharing to mitigate potential risks.
-
Randomized Controlled Trial
Mechanistic Evaluation of Diffusion Weighted Hyperintense Lesions After Large Spontaneous Intracerebral Hemorrhage: A Subgroup Analysis of MISTIE III.
Ischemic lesions on diffusion weighted imaging (DWI) are common after acute spontaneous intracerebral hemorrhage (ICH) but are poorly understood for large ICH volumes (> 30 mL). We hypothesized that large blood pressure drops and effect modification by cerebral small vessel disease markers on magnetic resonance imaging (MRI) are associated with DWI lesions. ⋯ In patients with large hypertensive ICH, white matter disease, intraventricular hemorrhage volume, and large reductions in SBP over the first 24 h were independently associated with DWI lesions. Further investigation of potential hemodynamic mechanisms of ischemic injury after large ICH is warranted.
-
Traumatic brain injury (TBI) can cause rapid brain inflammation. There is debate over the safety and efficacy of anti-inflammatory agents in its treatment. With a particular focus on cyclooxygenase 2 (COX2) selective inhibition, we sought to determine the impact of celecoxib versus no celecoxib treatment on outcomes in patients with TBI and compare these with outcomes associated with nonselective COX inhibition (ibuprofen) and corticosteroid (dexamethasone) treatment. ⋯ Early celecoxib and ibuprofen use within 5 days post TBI was associated with higher 1-year survival probabilities and fewer complications. With emerging yet controversial preclinical evidence to suggest that COX inhibition improves TBI outcomes, this population-level study offers suggestive support for these drugs' clinical benefit, which should be pursued in prospective clinical studies.