Neurocritical care
-
Monitoring of brain tissue oxygenation (PbtO2) is an important component of multimodal monitoring in traumatic brain injury. Over recent years, use of PbtO2 monitoring has also increased in patients with poor-grade subarachnoid hemorrhage (SAH), particularly in those with delayed cerebral ischemia. The aim of this scoping review was to summarize the current state of the art regarding the use of this invasive neuromonitoring tool in patients with SAH. ⋯ The most widely used PbtO2 threshold to define brain tissue hypoxia and initiate specific treatment is between 15 and 20 mm Hg. PbtO2 values can help identify the need for or the effects of various therapies, such as hyperventilation, hyperoxia, induced hypothermia, induced hypertension, red blood cell transfusion, osmotic therapy, and decompressive craniectomy. Finally, a low PbtO2 value is associated with a worse prognosis, and an increase of the PbtO2 value in response to treatment is a marker of good outcome.
-
Delayed cerebral ischemia (DCI) is one of the most important complications of subarachnoid hemorrhage. Despite lack of prospective evidence, medical rescue interventions for DCI include hemodynamic augmentation using vasopressors or inotropes, with limited guidance on specific blood pressure and hemodynamic parameters. For DCI refractory to medical interventions, endovascular rescue therapies (ERTs), including intraarterial (IA) vasodilators and percutaneous transluminal balloon angioplasty, are the cornerstone of management. ⋯ The existing literature on DCI rescue therapies is limited by small sample sizes, significant variability in patient populations, lack of standardized methodology, variable definitions of DCI, poorly reported outcomes, lack of long-term functional, cognitive, and patient-centered outcomes, and lack of control groups. Therefore, our current ability to interpret clinical results and make reliable recommendations regarding the use of rescue therapies is limited. This review summarizes existing literature on rescue therapies for DCI, provides practical guidance, and identifies future research needs.
-
One of the most serious complications after subarachnoid hemorrhage (SAH) is delayed cerebral ischemia, the cause of which is multifactorial. Delayed cerebral ischemia considerably worsens neurological outcome and increases the risk of death. The targets of hemodynamic management of SAH have widely changed over the past 30 years. ⋯ More recently, the concept of goal-directed therapy targeting euvolemia, with or without hypertension, is gaining preference. Despite the evolving concepts and the vast literature, fundamental questions related to hemodynamic optimization and its effects on cerebral perfusion and patient outcomes remain unanswered. In this review, we explain the rationale underlying the approaches to hemodynamic management and provide guidance on contemporary strategies related to fluid administration and blood pressure and cardiac output manipulation in the management of SAH.
-
Aneurysmal subarachnoid hemorrhage is a medical condition that can lead to intracranial hypertension, negatively impacting patients' outcomes. This review article explores the underlying pathophysiology that causes increased intracranial pressure (ICP) during hospitalization. Hydrocephalus, brain swelling, and intracranial hematoma could produce an ICP rise. ⋯ Indications for ICP monitoring include neurological deterioration, hydrocephalus, brain swelling, intracranial masses, and the need for cerebrospinal fluid drainage. This review emphasizes the importance of ICP monitoring and presents findings from the Synapse-ICU study, which supports a correlation between ICP monitoring and treatment with better patient outcomes. The review also discusses various therapeutic strategies for managing increased ICP and identifies potential areas for future research.
-
Multicenter Study
Neurological Pupil Index and Delayed Cerebral Ischemia after Subarachnoid Hemorrhage: A Retrospective Multicentric Study.
Delayed cerebral ischemia (DCI) occurs in around 30% of patients suffering from nontraumatic subarachnoid hemorrhage (SAH) and is associated with poor neurological outcome. Whether the Neurological Pupil index (NPi) derived from the automated pupillometry could help to diagnose the occurrence of DCI remains unknown. The aim of this study was to investigate the association of NPi with the occurrence of DCI in patients with SAH. ⋯ In this study, NPi measured three times a day and derived from the automated pupillometry had a limited value for the diagnosis of DCI in patients with SAH.