IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · Mar 2008
Error-related EEG potentials generated during simulated brain-computer interaction.
Brain-computer interfaces (BCIs) are prone to errors in the recognition of subject's intent. An elegant approach to improve the accuracy of BCIs consists in a verification procedure directly based on the presence of error-related potentials (ErrP) in the electroencephalogram (EEG) recorded right after the occurrence of an error. Several studies show the presence of ErrP in typical choice reaction tasks. ⋯ Five healthy volunteer subjects participated in a new human-robot interaction experiment, which seem to confirm the previously reported presence of a new kind of ErrP. However, in order to exploit these ErrP, we need to detect them in each single trial using a short window following the feedback associated to the response of the BCI. We have achieved an average recognition rate of correct and erroneous single trials of 83.5% and 79.2%, respectively, using a classifier built with data recorded up to three months earlier.
-
IEEE Trans Biomed Eng · Mar 2008
Array response kernels for EEG and MEG in multilayer ellipsoidal geometry.
We present forward modeling solutions in the form of array response kernels for electroencephalography (EEG) and magnetoencephalography (MEG), assuming that a multilayer ellipsoidal geometry approximates the anatomy of the head and a dipole current models the source. The use of an ellipsoidal geometry is useful in cases for which incorporating the anisotropy of the head is important but a better model cannot be defined. The structure of our forward solutions facilitates the analysis of the inverse problem by factoring the lead field into a product of the current dipole source and a kernel containing the information corresponding to the head geometry and location of the source and sensors. ⋯ Our forward solutions have the potential of facilitating the solution of the inverse problem, as they provide algebraic representations suitable for numerical implementation. The applicability of our models is illustrated with numerical examples on real EEG/MEG data of N20 responses. Our results show that the residual data after modeling the N20 response using a dipole for the source and an ellipsoidal geometry for the head is in average lower than the residual remaining when a spherical geometry is used for the same estimated dipole.