IEEE transactions on bio-medical engineering
-
In this paper, we report the development of a flexible base array of penetrating electrodes which can be used to interface with the spinal cord. A customizable and feasible fabrication protocol is described. The flexible base arrays were fabricated and implanted into surrogate cords which were elongated by 12%. ⋯ The validated model was used to assess the stresses induced by the electrodes of the three types of arrays on the cord, and to examine how various design parameters (thickness, base modulus, etc.,) impact the mechanical behavior of the electrode array. Rigid base arrays induced higher stresses on the cord than the flexible base arrays which in turn imposed higher stresses than the individual microwire implants. The developed flexible base array showed improvement over the rigid base array; however, its stiffness needs to be further reduced to emulate the mechanical behavior of individual microwire arrays without a base.
-
Remote photoplethysmography (rPPG) enables contactless monitoring of the blood volume pulse using a regular camera. Recent research focused on improved motion robustness, but the proposed blind source separation techniques (BSS) in RGB color space show limited success. ⋯ In a fitness setting using a simple spectral peak detector, the obtained pulse-rate for modest motion (bike) improves from 79% to 98% correct, and for vigorous motion (stepping) from less than 11% to more than 48% correct. We expect the greatly improved robustness to considerably widen the application scope of the technology.
-
IEEE Trans Biomed Eng · Sep 2013
Quantification of the variability in response to propofol administration in children.
Closed-loop control of anesthesia is expected to decrease drug dosage and wake up time while increasing patient safety and decreasing the work load of the anesthesiologist. The potential of closed-loop control in anesthesia has been demonstrated in several clinical studies. One of the challenges in the development of a closed-loop system that can be widely accepted by clinicians and regulatory authorities is the effect of interpatient variability in drug sensitivity. ⋯ In this paper, approximate models are validated for controller design by evaluating the predictive accuracy of the closed-loop behavior. A set of 47 validated models that describe the interpatient variability in the response to propofol in children is presented. This model set can be used for robust linear controller design provided that the experimental conditions are similar to the conditions during data collection.
-
IEEE Trans Biomed Eng · Sep 2013
Intensity-modulated microbend fiber optic sensor for respiratory monitoring and gating during MRI.
This paper describes a novel microbend fiber optic sensor system for respiratory monitoring and respiratory gating in the MRI environment. The system enables the noninvasive real-time monitoring and measurement of breathing rate and respiratory/body movement pattern of healthy subjects inside the MRI gantry, and has potential application in respiratory-gated image acquisition based on respiratory cues. The working principle behind this sensor is based on the microbending effect of an optical fiber on light transmission. ⋯ In vitro testing showed that our sensor has a typical signal-to-noise ratio better than 28 dB. Clinical MRI trials conducted on 20 healthy human subjects showed good and comparable breathing rate detection (with an accuracy of ±2 bpm) and respiratory-gated image quality produced using the sensor system, with reference to current predicate hospital device/system. The MRI safe, ease of operation characteristics, low fabrication cost, and extra patient comfort offered by this system suggest its good potential in replacing predicate device/system and serve as a dual function in real-time respiratory monitoring and respiratory-gated image acquisition at the same time during MRI.
-
IEEE Trans Biomed Eng · Sep 2013
An augmented reality system for epidural anesthesia (AREA): prepuncture identification of vertebrae.
We propose an augmented reality system to identify lumbar vertebral levels to assist in spinal needle insertion for epidural anesthesia. These procedures require careful placement of a needle to ensure effective delivery of anesthetics and to avoid damaging sensitive tissue such as nerves. ⋯ Validation is performed to test the accuracy of panorama generation, lumbar level identification, overall system accuracy, and the effect of changes in the curvature of the spine during the examination. The results from 17 subjects demonstrate the feasibility and capability of achieving an error within clinically acceptable range for epidural anaesthesia.