IEEE transactions on bio-medical engineering
-
IEEE Trans Biomed Eng · May 1999
A computational model of electrical stimulation of the retinal ganglion cell.
Localized retinal electrical stimulation in blind volunteers results in discrete round visual percepts corresponding to the location of the stimulating electrode. The success of such an approach to provide useful vision depends on elucidating the neuronal target of surface electrical stimulation. To determine if electrodes preferentially stimulate ganglion cells directly below them or passing fibers from distant ganglion cells, we developed a compartmental model for electric field stimulation of the retinal ganglion cell (RGC). ⋯ In the passive model, the axon is preferentially stimulated versus the soma. Although it may be possible to electrically stimulate RGC's near their cell body at lower thresholds than at their axon, these differences are relatively small. Alternative explanations should be sought to explain the focal perceptions observed in previously reported patient trials.
-
IEEE Trans Biomed Eng · Apr 1999
New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating.
Comparative studies on the well-known Pennes' equation and the newly developed thermal wave model of bioheat transfer (TWMBT) were performed to investigate the wave like behaviors of bioheat transfer occurred in thermal injury of biological bodies. The one-dimensional TWMBT in a finite medium was solved using separation of variables and the analytical solution showed distinctive wave behaviors of bioheat transfer in skin subjected to instantaneous heating. The finite difference method was used to simulate and study practical problems involved in burn injuries in which skin was stratified as three layers with various thermal physical properties. ⋯ A general heat flux criterion has been established to determine when the thermal wave propagation dominates the principal heat transfer process and the TWMBT can be used for tissue temperature prediction and burn evaluation. A preliminary interpretation on the mechanisms of the wave like behaviors of heat transfer in living tissues was conducted. The application of thermal wave theory can also be possibly extended to other medical problems which involve instantaneous heating or cooling.
-
IEEE Trans Biomed Eng · Apr 1999
Comparative StudyProposal of a new method for narrowing and moving the stimulated region of cochlear implants: animal experiment and numerical analysis.
We have proposed the tripolar electrode stimulation method (TESM) for narrowing the stimulation region and continuously moving the stimulation site for cochlear implants. The TESM stimulates the auditory nerve array using three adjacent electrodes which are selected among the electrodes of an electrode array within the lymphatic fluid. Current is emitted from each of the two lateral electrodes and received by the central electrode. ⋯ It is possible to determine the measure of the stimulation region or site by controlling the width value and the ratios of the currents emitted from the lateral electrodes. As a result, we succeeded in narrowing the stimulation region by controlling the sum of the currents emitted from the two lateral electrodes. Also we succeeded in continuously moving the stimulation site by modifying the currents emitted from the two lateral electrodes.
-
IEEE Trans Biomed Eng · Mar 1999
The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia.
The objective of this study was to design and evaluate a methodology for estimating the depth of anesthesia in a canine model that integrates electroencephalogram (EEG)-derived autoregressive (AR) parameters, hemodynamic parameters, and the alveolar anesthetic concentration. Using a parameters, and the alveolar anesthetic concentration. Using a parametric approach, two separate AR models of order ten were derived for the EEG, one from the third-order cumulant sequence and the other from the autocorrelation lags of the EEG. ⋯ Since the estimation of the depth of anesthesia involves cognitive as well as statistical uncertainties, a fuzzy integral was used to integrate the individual estimates of the various networks and to arrive at the final estimate of the depth of anesthesia. Data from 11 experiments were used to train the NN's which were then tested on nine other experiments. The fuzzy integral of the individual NN estimates (when tested on 43 feature vectors from seven of the nine test experiments) classified 40 (93%) of them correctly, offering a substantial improvement over the individual NN estimates.
-
A fully automated system was developed for the depth of anesthesia estimation and control with the intravenous anesthetic, Propofol. The system determines the anesthesia depth by assessing the characteristics of the mid-latency auditory evoked potentials (MLAEP). The discrete time wavelet transformation was used for compacting the MLAEP which localizes the time and the frequency of the waveform. ⋯ The anesthesia level is adjusted by scheduled incrementation and a fuzzy-logic based controller which assesses the mean arterial pressure and/or the heart rate for decrementation as necessary. Various safety mechanisms are implemented to safeguard the patient from erratic controller actions caused by external disturbances. This system completed with a friendly interface has shown satisfactory performance in estimating and controlling the depth of anesthesia.