Clinical EEG and neuroscience
-
Observational Study
Neurophysiological Findings and Brain Injury Pattern in Patients on ECMO.
Introduction. Brain injury is a major determinant of outcomes in extracorporeal membrane oxygenation (ECMO). Neurologic prognostication in ECMO has not been established. ⋯ Conclusions. Absent EEG reactivity with the preservation of SSEP N20 was associated with poor outcome in comatose ECMO patients. We advise caution in interpreting electrophysiological tests in prognosticating ECMO patients until the patterns and outcomes are better understood.
-
Background. Neuropathic pain (NP) following spinal cord injury (SCI) affects the quality of life of almost 40% of the injured population. The modified brain connectivity was reported under different NP conditions. ⋯ The altered theta band connectivity found in the fronto-parietal network along with a global increase in local efficiency is a consequence of pain only, while altered connectivity in the beta and gamma bands along with a decrease in cluster coefficient values observed in the sensory-motor network is dominantly a consequence of injury only. The outcomes of this study may be used as a potential diagnostic biomarker for the NP. Further, the expected insight holds great clinical relevance in the design of neurofeedback-based neurorehabilitation and connectivity-based brain-computer interfaces for SCI patients.
-
Introduction. The evaluation of individuals with fibromyalgia is challenging. Electroencephalography is a promising resource for identifying physiological biomarkers in fibromyalgia, contributing to its diagnosis. ⋯ The data was organized into subcategories related to the form of use, protocols, electroencephalographic findings in patients with fibromyalgia, and the EEG analysis method. Conclusion. Electroencephalography is a promising method for identifying and characterizing biomarkers for fibromyalgia.
-
Posttraumatic stress disorder (PTSD) co-occurring with mild traumatic brain injury (mTBI) is common in veterans. Worse clinical outcome in those with PTSD has been associated with decreased serum neurosteroid levels. Furthermore, decreased cortical thickness has been associated with both PTSD and mTBI. ⋯ Decreased cortical thickness in individuals with PTSD + mTBI is associated with decreased serum neurosteroid levels and greater PTSD symptom severity. Causality is unclear. However, future studies might investigate whether treatment with neurosteroids could counteract stress-induced neural atrophy in PTSD + mTBI by potentially preserving cortical thickness.
-
Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers-especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the development of multimodal neuroimaging (MN), which combines data obtained from multiple neuroimaging techniques, such as electroencephalography, functional magnetic resonance imaging, and yields more detailed information about brain dynamics. There are several types of MN, including visual inspection, data integration, and data fusion. ⋯ Several studies differentiated patients with psychiatric diseases and healthy controls with using combined datasets. The common conclusion among these studies is that the prediction of diseases increases when combining data via MN techniques; however, there remain a few challenges associated with MN, such as sample size. Perhaps in the future N-way fusion can be used to combine multiple neuroimaging techniques or nonimaging predictors (eg, cognitive ability) to overcome the limitations of MN.