Journal of the American College of Radiology : JACR
-
Adversarial networks were developed to complete powerful image-processing tasks on the basis of example images provided to train the networks. These networks are relatively new in the field of deep learning and have proved to have unique strengths that can potentially benefit radiology. Specifically, adversarial networks have the potential to decrease radiation exposure to patients through minimizing repeat imaging due to artifact, decreasing acquisition time, and generating higher quality images from low-dose or no-dose studies. The authors provide an overview of a specific type of adversarial network called a "generalized adversarial network" and review its uses in current medical imaging research.
-
Review
Artificial Intelligence and Clinical Decision Support for Radiologists and Referring Providers.
Recent advances in artificial intelligence (AI) are providing an opportunity to enhance existing clinical decision support (CDS) tools to improve patient safety and drive value-based imaging. We discuss the advantages and potential applications that may be realized with the synergy between AI and CDS systems. From the perspective of both radiologist and ordering provider, CDS could be significantly empowered using AI. ⋯ For referring providers, an AI-enabled CDS solution could enable an evolution from existing imaging-centric CDS toward decision support that takes into account a holistic patient perspective. More intelligent CDS could suggest imaging examinations in highly complex clinical scenarios, assist on the identification of appropriate imaging opportunities at the health system level, suggest appropriate individualized screening, or aid health care providers to ensure continuity of care. AI has the potential to enable the next generation of CDS, improving patient care and enhancing providers' and radiologists' experience.
-
Within artificial intelligence, machine learning (ML) efforts in radiation oncology have augmented the transition from generalized to personalized treatment delivery. Although their impact on quality and safety of radiation therapy has been limited, they are increasingly being used throughout radiation therapy workflows. Various data-driven approaches have been used for outcome prediction, CT simulation, clinical decision support, knowledge-based planning, adaptive radiation therapy, plan validation, machine quality assurance, and process quality assurance; however, there are many challenges that need to be addressed with the creation and usage of ML algorithms as well as the interpretation and dissemination of findings. In this review, the authors present current applications of ML in radiation oncology quality and safety initiatives, discuss challenges faced by the radiation oncology community, and suggest future directions.
-
Radiology-pathology correlation has long been foundational to continuing education, peer learning, quality assurance, and multidisciplinary patient care. The objective of this study was to determine whether modern deep-learning language-modeling techniques could reliably match pathology reports to pertinent radiology reports. ⋯ Modern deep-learning language-modeling approaches are promising for radiology-pathology correlation. Because of their rapid adaptation to underlying training labels, these models advance previous artificial intelligence work in that they can be continuously improved and tuned to improve performance and adjust to user and site-level preference.
-
Rapid technological advancements in artificial intelligence (AI) methods have fueled explosive growth in decision tools being marketed by a rapidly growing number of companies. AI developments are being driven largely by computer scientists, informaticians, engineers, and businesspeople, with much less direct participation by radiologists. Participation by radiologists in AI is largely restricted to educational efforts to familiarize them with the tools and promising results, but techniques to help them decide which AI tools should be used in their practices and to how to quantify their value are not being addressed. This article focuses on the role of radiologists in imaging AI and suggests specific ways they can be engaged by (1) considering the clinical need for AI tools in specific clinical use cases, (2) undertaking formal evaluation of AI tools they are considering adopting in their practices, and (3) maintaining their expertise and guarding against the pitfalls of overreliance on technology.