Journal of the American College of Radiology : JACR
-
Rapid technological advancements in artificial intelligence (AI) methods have fueled explosive growth in decision tools being marketed by a rapidly growing number of companies. AI developments are being driven largely by computer scientists, informaticians, engineers, and businesspeople, with much less direct participation by radiologists. Participation by radiologists in AI is largely restricted to educational efforts to familiarize them with the tools and promising results, but techniques to help them decide which AI tools should be used in their practices and to how to quantify their value are not being addressed. This article focuses on the role of radiologists in imaging AI and suggests specific ways they can be engaged by (1) considering the clinical need for AI tools in specific clinical use cases, (2) undertaking formal evaluation of AI tools they are considering adopting in their practices, and (3) maintaining their expertise and guarding against the pitfalls of overreliance on technology.
-
Radiology-pathology correlation has long been foundational to continuing education, peer learning, quality assurance, and multidisciplinary patient care. The objective of this study was to determine whether modern deep-learning language-modeling techniques could reliably match pathology reports to pertinent radiology reports. ⋯ Modern deep-learning language-modeling approaches are promising for radiology-pathology correlation. Because of their rapid adaptation to underlying training labels, these models advance previous artificial intelligence work in that they can be continuously improved and tuned to improve performance and adjust to user and site-level preference.
-
Currently, the use of artificial intelligence (AI) in radiology, particularly machine learning (ML), has become a reality in clinical practice. Since the end of the last century, several ML algorithms have been introduced for a wide range of common imaging tasks, not only for diagnostic purposes but also for image acquisition and postprocessing. AI is now recognized to be a driving initiative in every aspect of radiology. ⋯ Most of the current AI methods have some internal and external disadvantages that are impeding their ultimate implementation in the clinical arena. As such, AI can be considered a portion of a business trying to be introduced in the health care market. For this reason, this review analyzes the current status of AI, and specifically ML, applied to radiology from the scope of strengths, weaknesses, opportunities, and threats (SWOT) analysis.
-
The advent of artificial intelligence (AI) promises to have a transformational impact on quality in medicine, including in radiology. However, experience has shown that quality tools alone are often not sufficient to bring about consistent excellent performance. Specifically, rather than assuming outcome targets are consistently met, in quality control, managers assume that wide variation is likely present unless proven otherwise with objective performance data. ⋯ We consider these elements to be universally applicable, including in the application of AI-based models. We also discuss how the lack of specific elements of a quality control program can hinder widespread quality control efforts. We illustrate the concept using the example of a CT radiation dose optimization and process control program previously developed by one of the authors and provide several examples of how AI-based tools might be used for quality control in radiology.