Journal of the American College of Radiology : JACR
-
Currently, the use of artificial intelligence (AI) in radiology, particularly machine learning (ML), has become a reality in clinical practice. Since the end of the last century, several ML algorithms have been introduced for a wide range of common imaging tasks, not only for diagnostic purposes but also for image acquisition and postprocessing. AI is now recognized to be a driving initiative in every aspect of radiology. ⋯ Most of the current AI methods have some internal and external disadvantages that are impeding their ultimate implementation in the clinical arena. As such, AI can be considered a portion of a business trying to be introduced in the health care market. For this reason, this review analyzes the current status of AI, and specifically ML, applied to radiology from the scope of strengths, weaknesses, opportunities, and threats (SWOT) analysis.
-
The advent of artificial intelligence (AI) promises to have a transformational impact on quality in medicine, including in radiology. However, experience has shown that quality tools alone are often not sufficient to bring about consistent excellent performance. Specifically, rather than assuming outcome targets are consistently met, in quality control, managers assume that wide variation is likely present unless proven otherwise with objective performance data. ⋯ We consider these elements to be universally applicable, including in the application of AI-based models. We also discuss how the lack of specific elements of a quality control program can hinder widespread quality control efforts. We illustrate the concept using the example of a CT radiation dose optimization and process control program previously developed by one of the authors and provide several examples of how AI-based tools might be used for quality control in radiology.
-
Review
Artificial Intelligence and Clinical Decision Support for Radiologists and Referring Providers.
Recent advances in artificial intelligence (AI) are providing an opportunity to enhance existing clinical decision support (CDS) tools to improve patient safety and drive value-based imaging. We discuss the advantages and potential applications that may be realized with the synergy between AI and CDS systems. From the perspective of both radiologist and ordering provider, CDS could be significantly empowered using AI. ⋯ For referring providers, an AI-enabled CDS solution could enable an evolution from existing imaging-centric CDS toward decision support that takes into account a holistic patient perspective. More intelligent CDS could suggest imaging examinations in highly complex clinical scenarios, assist on the identification of appropriate imaging opportunities at the health system level, suggest appropriate individualized screening, or aid health care providers to ensure continuity of care. AI has the potential to enable the next generation of CDS, improving patient care and enhancing providers' and radiologists' experience.
-
Adversarial networks were developed to complete powerful image-processing tasks on the basis of example images provided to train the networks. These networks are relatively new in the field of deep learning and have proved to have unique strengths that can potentially benefit radiology. Specifically, adversarial networks have the potential to decrease radiation exposure to patients through minimizing repeat imaging due to artifact, decreasing acquisition time, and generating higher quality images from low-dose or no-dose studies. The authors provide an overview of a specific type of adversarial network called a "generalized adversarial network" and review its uses in current medical imaging research.