The American journal of Chinese medicine
-
Comparative Study
Comparison of Immunomodulatory and Anticancer Activities in Different Strains of Tremella fuciformis Berk.
Tremella fuciformis Berk (TF) is a common edible and medicinal mushroom, and has long been used in food and in Chinese medicine. It possesses anticancer, anti-inflammation, anti-oxidative, and neuroprotective abilities. Since their cultivation is a problem, TFs in Taiwan are primarily imported from China, which has a problem with pesticide residues. ⋯ Interestingly, we found that hot water extracts of TFs may augment necrotic cell death, whereas, cold water extracts of TFs induce apoptosis. Furthermore, we also showed that these TFs activate caspase-3 cleavage, up regulate the Bax/Bcl-2 ratio, and decrease MMP-9 expressions in PC-3 cells. Taken together, our results indicated that T1 and T6 strains of TFs showed the similar immune modulatory and anticancer abilities were better than the CH strain of TFs.
-
Patients with type 2 diabetes have increased cardiovascular disease risk compared with those without diabetes. Hyperglycemia can induce reactive oxygen species (ROS) generation, which contributes to the development of diabetic cardiomyopathy. Our previous study has demonstrated that the total saponins of Aralia taibaiensis (sAT), a frequently-used antidiabetic medicine in traditional Chinese medicine (TCM), can scavenge free radicals in vitro and have good anti-oxidant ability on lipid peroxidation of rat liver microsomes. ⋯ Further study revealed that sAT induced the nuclear translocation of Nrf2 and expression of its downstream targets. Moreover, Nrf2 siRNA markedly abolished the cytoprotective effects of sAT. sAT exerted cytoprotective effects against oxidative stress induced by hyperglycemia and the cardioprotective effects of sAT might be through the Nrf2/ARE pathway. Thus, sAT might be a promising candidate for the treatment of diabetic cardiomyopathy.
-
Astragalus and Panax notoginseng are commonly used to treat cardio-cerebrovascular diseases in China and are often combined together to promote curative effect. We speculate that the enhancement of the combination on anticerebral ischemia injury may come from the main active components. The purpose of this work was to probe the effects and mechanisms of Astragaloside IV (the active component of Astragalus) combined with Ginsenoside Rg1, Ginsenoside Rb1, and Notoginsenoside R1 (the active components of P. notoginseng) to antagonize ischemia/reperfusion (I/R) injury via inflammation and apoptosis. ⋯ Astragaloside IV, Ginsenoside Rg1, and Notoginsenoside R1 further augmented GRP78 expression caused by I/R, Notoginsenoside R1 attenuated caspase-12 protein expression, Astragaloside IV and Ginsenoside Rg1 lessened the phosphorylation of JNK1/2, and the four active components combination was capable of up-regulating GRP78 protein while down-regulating the expressions of caspase-12 and p-JNK1/2. Similarly, the effects of the four active components combination were greater than those of effective components alone. These suggested that the combination of the main active components of Astragalus and Panax notoginseng could strengthen protective effects on cerebral ischemia injury via anti-apoptosis and anti-inflammation, and the mechanisms might be associated with restraining the activation of NF-κB and JAK1/STAT1 signal pathways and regulating endoplasmic reticulum stress (ERS) after cerebral ischemia.
-
Ursolic acid (UA), a pentacyclic triterpenoid, is known to exert antitumor activity in breast, lung, liver and colon cancers. Nonetheless, the underlying mechanism of ursolic acid in prostate cancer cells still remains unclear. In the present study, we report the chemotherapeutic effects of ursolic acid as assessed using in vitro and in vivo models. ⋯ Further, administration of UA significantly inhibited the growth of LNCaP prostate tumor xenografts in athymic nude mice, which was associated with inhibition of cell proliferation, induction of apoptosis of tumor cells and decreased expression of PI3K downstream factors, such as p-Akt and p-mTOR in tumor xenograft tissues. Our study demonstrates that UA not only inhibits cell growth but also induces apoptosis through modulation of the PI3K/Akt/mTOR pathway in human prostate cancer cells. We suggest that UA may be a new chemotherapeutic candidate against prostate cancer.
-
Bladder cancer is a common malignancy worldwide. However, there is still no effective therapy for bladder cancer. In this study, we investigated the cytotoxic effects of cantharidin [a natural toxin produced (pure compound) from Chinese blister beetles (Mylabrisphalerata or Mylabriscichorii) and Spanish flies (Cantharis vesicatoria)] in human bladder cancer cell lines (including: T24 and RT4 cells). ⋯ Importantly, cantharidin significantly decreased the tumor volume (a dramatic 71% reduction after 21 days of treatment) in nude mice xenografted with T24 cells. Taken together, these results indicate cantharidin induced human bladder cancer cell apoptosis through a calcium/PKC-regulated ER stress pathway. These findings suggest that cantharidin may be a novel and potential anticancer agent targeting on bladder cancer cells.