The American journal of Chinese medicine
-
A previous study presented that glycyrrhizic acid as the hepatoprotective agent inhibits total parenteral nutrition-associated acute liver injury in rats. However, the anticancer effect and mechanism of glycyrrhizic acid in human hepatocellular carcinoma (HCC) is ambiguous. The purpose of the present study was to investigate the effect of glycyrrhizic acid on apoptosis dysregulation and metastatic potential in HCC in vitro and in vivo. ⋯ Glycyrrhizic acid also significantly triggered apoptosis and extrinsic/intrinsic apoptotic signaling transduction. In addition, PD98059 (ERK inhibitor) and LY294002 (AKT inhibitor) obviously reduced cell invasion and expression of metastasis-associated proteins. Taken together, these results indicated that glycyrrhizic acid induces apoptosis through extrinsic/intrinsic apoptotic signaling pathways and diminishes EGFR/AKT/ERK-modulated metastatic potential in HCC in vitro and in vivo.
-
Accumulating evidence suggests that gut microbiota plays a crucial role in the development of metabolic diseases, especially type 2 diabetes mellitus (T2DM). The nutrient-rich resource Cornus Fructus (CF) showed curative effects on diabetes mellitus. However, the mechanism underlying its hyperglycemic activity remains obscure. ⋯ Also, CF extracts could elevate the production of short-chain fatty acids, as well as regulate the composition of gut microbiota. The key bacteria related to T2DM including Firmicutes, Bacteroides, Lactobacillus, and Clostridium were modulated by metformin and CF. Altogether, CF is a potential nutrient-rich candidate that can be used in functional foods for the treatment of T2DM, and the change of gut microbiota might be a novel mechanism underlying its hyperglycemic activity.
-
Autophagic defects are a hallmark of neurodegenerative disorders, such as Parkinson's disorder (PD). Enhancing autophagy to remove impaired mitochondria and toxic protein aggregation is an essential component of PD treatment. In particular, activation of autophagy confers neuroprotection in cellular and preclinical models of neurodegenerative diseases. ⋯ We report that EA improves PD motor symptoms in mice and enhances (1) autophagy initiation (increased Beclin 1), (2) autophagosome biogenesis (increased Atg5, Atg7, Atg9A, Atg12, Atg16L, Atg3, and LC3-II), (3) autophagy flux/substrate degradation (decreased p62), and (4) mitophagy (increased PINK1 and DJ-1) in neurons of the substantia nigra, striatum, hippocampus, and cortex (affected brain areas of PD, Huntington disease, and Alzheimer's disease). EA enhances autophagy initiation, autophagosome biogenesis, mitophagy, and autophagy flux/substrate degradation in certain brain areas. Our findings are the first to show that EA regulates neuronal autophagy and suggest that this convenient, inexpensive treatment has exciting therapeutic potential in neurodegenerative disorders.
-
Ulcerative colitis is a chronic and recurrent inflammatory bowel disease mediated by immune response. Geniposide is the main active ingredient extracted from Gardenia jasminoides, which has been suggested to exert excellent efficacy on inflammatory disease. Herein, in this study, we aimed to uncover the systematic understanding of the mechanism and effects of geniposide in ameliorating inflammatory responses in colitis. ⋯ In mechanism studies, the inhibition of AMPK/Sirt1 attenuated the anti-inflammatory effects of geniposide in colitis. The activation of NLRP3 attenuated the anti-inflammatory effects of geniposide in colitis. Taken together, our results demonstrated that geniposide ameliorated inflammatory responses in colitis vai the suppression of NLRP3 inflammasome in macrophages by AMPK/Sirt1-dependent signaling.
-
Age-related myocardial dysfunction is a very large healthcare burden. Here, we aimed to investigate whether ginsenoside Rb1 (Rb1) improves age-related myocardial dysfunction and to identify the relevant molecular mechanism. Young mice and aged mice were injected with Rb1 or vehicle for 3 months. ⋯ Rb1 also decreased the aging-induced myocardial inflammatory response, as measured by serum or myocardial interleukin-6 and tumor necrosis factor-[Formula: see text] levels. Furthermore, Rb1 treatment in aged mice increased cytoplasmic NF-[Formula: see text]B but decreased nuclear NF-[Formula: see text]B, which indicated the suppression of the NF-[Formula: see text]B signaling pathway by regulating the translocation of NF-[Formula: see text]B. Rb1 could alleviate aging-related myocardial dysfunction by suppressing fibrosis and inflammation, which is potentially associated with regulation of the NF-[Formula: see text]B signaling pathway.