The American journal of Chinese medicine
-
The medicinal plant Rhodiola crenulata grows at high altitudes in the Arctic and mountainous regions and is commonly used in phytotherapy in Eastern European and Asian countries. In the present study, we investigated the anti-apoptotic effect of Rhodiola crenulata and its neuroprotective mechanism of action in a rat model of D-galactose-induced aging. Two groups of twelve-week-old male Wistar rats received a daily injection of D-galactose (150 mg/kg/day, i.p.) and orally administered Rhodiola crenulata (0, 248 mg/kg/day) for eight weeks, while a control group received a saline injection (1 ml/kg/day, i.p.). ⋯ In addition, D-galactose impaired the phosphorylation of PI3K/Akt, an important survival signaling event in neurons. Rhodiola crenulata, however, protected against all these neurotoxicities in aging brains. The present study suggests that neuronal survival promoted by Rhodiola crenulata may be a potentially effective method to enhance the resistance of neurons to age-related disorders.
-
Lymph node migration results in poor prognoses for nasopharyngeal carcinoma (NPC) patients. Tricetin, a flavonoid derivative, regulates tumorigenesis activity through its antiproliferative and antimetastatic properties. However, the molecular mechanism of tricetin affecting the migration and invasion of NPC cells remains poorly understood. ⋯ PS-1 was transcriptionally inhibited via the Akt signaling pathway but not mitogen-activated protein kinase pathways, such as the JNK, p38, and ERK1/2 pathways. In addition to upregulating GSK-3[Formula: see text] phosphorylation through Akt suppression, tricetin may downregulate the activity of PS-1. Overall, our study provides new insight into the role of tricetin-induced molecular regulation in the suppression of NPC metastasis and suggests that tricetin has prospective therapeutic applications for patients with NPC.
-
Rhodiola crenulata, a popular folk medicine for anti-altitude sickness in Tibet, has been shown to have protective effects against high glucose (HG)-induced endothelial cell dysfunction in human umbilical vein endothelial cells (HUVECs). However, its mechanisms of action are unclear. Here, we aimed to examine the effects and the mechanisms of action of Rhodiola crenulata extract (RCE) on matrix metalloproteinases (MMPs) and inflammatory responses under HG conditions. ⋯ Consistently, HG-induced activation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response protein (MyD88) signaling pathway, intracellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and high mobility group box 1 (HMGB1) as well as endothelial cell apoptosis was inhibited by RCE treatment. RCE exerts protective effects on endothelial cells against HG insult, partially by suppressing the HMGB1/TLR4 axis. These findings indicate that Rhodiola crenulata may be a potential therapeutic agent for diabetes-associated vascular diseases.
-
Autophagic defects are a hallmark of neurodegenerative disorders, such as Parkinson's disorder (PD). Enhancing autophagy to remove impaired mitochondria and toxic protein aggregation is an essential component of PD treatment. In particular, activation of autophagy confers neuroprotection in cellular and preclinical models of neurodegenerative diseases. ⋯ We report that EA improves PD motor symptoms in mice and enhances (1) autophagy initiation (increased Beclin 1), (2) autophagosome biogenesis (increased Atg5, Atg7, Atg9A, Atg12, Atg16L, Atg3, and LC3-II), (3) autophagy flux/substrate degradation (decreased p62), and (4) mitophagy (increased PINK1 and DJ-1) in neurons of the substantia nigra, striatum, hippocampus, and cortex (affected brain areas of PD, Huntington disease, and Alzheimer's disease). EA enhances autophagy initiation, autophagosome biogenesis, mitophagy, and autophagy flux/substrate degradation in certain brain areas. Our findings are the first to show that EA regulates neuronal autophagy and suggest that this convenient, inexpensive treatment has exciting therapeutic potential in neurodegenerative disorders.
-
Pharmacological activities of some Leguminosae family members were reported. Pharmacological activities of Archidendron lucidum, a Leguminosae family member have never been explored. Therefore, this study investigated anti-inflammatory effects of an Archidendron lucidum methanol extract (Al-ME). ⋯ HPLC analysis identified quercetin, luteolin, and kaempferol as major anti-inflammatory components in Al-ME. Al-ME ameliorated HCl/EtOH-induced gastritis symptoms in mice by suppressing iNOS and IL-6 mRNA expressions and I κ B α phosphorylation. Therefore, these results suggest that Al-ME exhibited anti-inflammatory activity by targeting NF- κ B signaling pathway, implying that Al-ME could be potent anti-inflammatory medications to prevent and treat inflammatory diseases.