The American journal of Chinese medicine
-
Idiopathic Pulmonary Fibrosis (IPF) is identifiable by the excessive increase of mesenchyme paired with the loss of epithelium. Total flavonoids of Astragalus (TFA), the main biologically active ingredient of the traditional Chinese medicine, Astragalus membranaceus (Huangqi), shows outstanding effects on treating pulmonary disorders, including COVID-19-associated pulmonary dysfunctions. This study was designed to evaluate the efficacy of TFA on treating pulmonary fibrosis and the possible mechanisms behind these effects. ⋯ TFA attenuated BLM-induced pulmonary fibrosis in mice by modulating inflammatory infiltration and M2 macrophage polarization; it furthermore modulated EMT through regulating the TGF-[Formula: see text]1/Smad pathway. In addition, TFA augmented the expression of the Wnt7b protein, which plays an important role in alveolar epithelium reparation. In conclusion, TFA alleviated bleomycin-induced mouse lung fibrosis by preventing the fibrotic response and increasing epithelium regeneration.
-
Solasonine (SS) is a natural glycoalkaloid compound that has been reported to possess a significant anticancer function. However, its anticancer effects and related mechanisms in osteosarcoma (OS) have not been studied. This study sought to investigate the impact of SS on the growth of OS cells. ⋯ Additionally, SS reduced the levels of Wnt3a, [Formula: see text]-catenin, and Snail in OS cells in vitro. Furthermore, Wnt3a activation reversed the SS-induced inhibition of glycolysis in OS cells. Collectively, this study discovered a novel effect of SS in inhibiting aerobic glycolysis, in addition to cancer stem-like features and EMT, implying that SS could be a therapeutic candidate for OS treatment.
-
Rosa roxburghii Tratt is a traditional Chinese plant that has been used to treat different inflammatory diseases. The purpose of this study was to investigate the mechanism of action of Rosa roxburghii Tratt extract (RRTE) against ulcerative colitis (UC) using network pharmacology and experimental validation. HPLC-Q/Orbitrap MS was used to rapidly identify the substances contained in RRTE after extracting the active components from the fruit. ⋯ In addition, RRTE alleviated dextran sulfate sodium salt (DSS)-induced cell injury and significantly decreased the protein expression levels of EGFR, PIK3R1, and p-AKT in NCM460 cells in vitro. Furthermore, RRTE significantly regulated the expression of the apoptosis-related proteins Apoptotic protease-activating factor 1 (Apaf1), cleaved caspase-3, B-cell lymphoma-2 (Bcl2), and Bcl2 associated X protein (Bax). In conclusion, the components of RRTE are complex, and RRTE can relieve UC through the EGFR-mediated PI3K/Akt pathway.
-
Atherosclerotic cardiovascular diseases, commonly known as the formation of fibrofatty lesions in the artery wall, are the leading causes of death globally. Oxidized low-density lipoprotein (oxLDL) is one of the major components of atherosclerotic plaques. It is evident that dietary supplementation containing sources of antioxidants can prevent atherogenic diseases. ⋯ This effect was further confirmed using knockdown AMPK with small interfering RNA (siRNA) and pharmaceutical reagents, such as the AMPK activator (AICAR), PKC inhibitor (Gö 6983), and ROS inhibitor (DPI). Furthermore, the oxLDL-induced intracellular calcium rise and the potential collapse of the mitochondrial membrane reduced the Bcl-2/Bax ratio, and released cytochrome c from the mitochondria, leading to the subsequent activation of caspase-3 in HUVECs, which were also markedly suppressed by SAL pretreatment. The results mentioned above may provide additional insights into the possible molecular mechanisms underlying the cardiovascular protective effects of SAL.
-
Maslinic acid (MA) is a pentacyclic triterpene obtained from the peel of olives that exhibits anti-inflammatory and antioxidant properties in several conditions. Our previous study revealed that MA exerted a cardioprotective effect by repressing inflammation and apoptosis during myocardial ischemia-reperfusion injury (MIRI). However, data regarding the antioxidative effects of MA on MIRI remains limited. ⋯ Conversely, MA markedly reduced the intranuclear NF-[Formula: see text]B p65 and TNF-[Formula: see text] expression, which could be partially abolished by ML385 (Nrf2 inhibitor). Overall, our results indicate that MA, in a dose-dependent manner, mitigated I/R-induced myocardial injury and oxidative stress via activating the Nrf2/HO-1 pathway and inhibiting NF-[Formula: see text]B activation. Furthermore, MA exerts its cardioprotective effect through regulating the crosstalk between the Nrf2 and NF-[Formula: see text]B pathways.