The American journal of Chinese medicine
-
SARS-CoV-2 Omicron led to the most serious outbreak of COVID-19 in Hong Kong in 2022. Under the pressure of a high volume of patients and limited medical resources, Chinese herbal medicine (CHM) has been extensively used. This is a case-control study of the infected patients that aims to evaluate the effectiveness of CHM using data extracted from the Hong Kong Baptist University Telemedicine Chinese Medicine Centre database. ⋯ Additionally, the symptom disappearance rates of symptoms such as chills, cough, sputum, dry throat, itching throat, headache, chest tightness, abdominal pain, diarrhea, and fatigue were significantly higher in the CHM group than in the no-CHM group. In conclusion, CHM intervention can significantly reduce NCT and COVID-19 symptoms. Chinese medicine can be accurately prescribed based on a telemedical consultation.
-
Emodin is a natural compound found in several traditional Chinese medicines, including Rheum palmatum and Polygonum cuspidatum. Recent studies have shown that emodin exhibits potent anticancer effects against a variety of cancer types, including liver, breast, lung, and colon cancer. Emodin's anticancer effects are mediated through several mechanisms, including inhibition of cell proliferation, induction of apoptosis, and suppression of tumor angiogenesis and metastasis. ⋯ Finally, we discuss the challenges and opportunities for the translation of emodin's anticancer properties into clinical applications, including the need for further preclinical and clinical studies to evaluate its safety and efficacy. In conclusion, emodin represents a promising natural compound with potent anticancer properties, and its potential as a therapeutic agent for cancer treatment warrants further investigation. This review provides a comprehensive overview of the current research progress and new perspectives on emodin's anticancer effects, which may facilitate the development of novel therapeutic strategies for cancer treatment.
-
Colorectal cancer (CRC) is the third most common cancer worldwide. The main obstacle in treating advanced CRC is tumor recurrence and metastasis due to chemoresistance. S-phase kinase associated protein 2 (Skp2), an E3 ligase, is highly associated with tumor resistance and a poor prognosis. ⋯ Curcumol exhibited significant antitumor effects against CRC, such as increased intrinsic apoptosis and decreased tumorigenic properties, both in vivo and in vitro. Furthermore, curcumol overcame 5-fluorouracil (5-Fu) resistance in CRC and induced apoptosis in 5-Fu-resistant CRC cells. The present data revealed a novel antitumor mechanism of glycolytic regulation by curcumol, suggesting that curcumol may be a potential chemical candidate for treating 5-Fu-resistant CRC.
-
Cinobufagin, a cardiotonic steroid derived from toad venom extracts, exhibits significant anticancer properties by inhibiting Na[Formula: see text]/K[Formula: see text]-ATPase in cancer cells. It is frequently used in clinical settings to treat advanced-stage cancer patients, improving their quality of life and survival time. However, its long-term use can result in multidrug resistance to other chemotherapy drugs, and the exact mechanism underlying this effect remains unknown. ⋯ Cinobufagin-inhibited cell proliferation, induced apoptosis, and generated cell autophagy by upregulating the expression of MAP1 light chain 3 protein II, Beclin1, and autophagy-related protein 12-5. In addition, the autophagy inhibitor MRT68921 improved the antiproliferative and proapoptotic effects of cinobufagin in the studied cell lines. Overall, this study suggests that combining cinobufagin with an autophagy inhibitor can effectively treat HCC, providing a potential strategy for cancer therapy.
-
Diabetic nephropathy (DN) is thought to be the major cause of end-stage renal disease. Due to its complicated pathogenesis and the low efficacy of DN treatment, a deep understanding of new etiological factors may be useful. Ferroptosis, a nonapoptotic form of cell death, is characterized by the accumulation of iron-dependent lipid peroxides to lethal levels. ⋯ We found HG-induced abnormal activation of ferroptosis of renal tubular epithelial cells, and QCT treatment inhibited ferroptosis by downregulating the expression of transferrin receptor 1 (TFR-1) and upregulating the expression of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH-1), and the cystine/glutamate reverse antiporter solute carrier family 7 member (SLC7A11) in DN mice and HG-incubated HK-2 cells. Subsequently, both in vitro and in vivo results confirmed that QCT activated the NFE2-related factor 2 (Nrf2)/Heme oxygenase-1(HO-1) signaling pathway by increasing the levels of Nrf2 and HO-1. Therefore, this study supports that QCT inhibits the ferroptosis of renal tubular epithelial cells by regulating the Nrf2/HO-1 signaling pathway, providing a novel insight into the protective mechanism of QCT in DN treatment.