The American journal of Chinese medicine
-
Osthole, a coumarin compound mainly derived from Cnidium monnieri (L.), has attracted much interest from the scientific community owing to its multiple therapeutic properties. However, its pharmacological mechanism, pharmacokinetics, and toxicological effects are far from clear. Furthermore, the potential drug delivery platforms of osthole remain to be comprehensively delineated. ⋯ In addition, this phytoconstituent possesses potential hepatotoxicity, and caution should be exercised against the risk of the drug combination. Furthermore, given its needy solubility in aqueous medium and non-organizational targeting, novel drug delivery methods have been designed to overcome these shortcomings. Given the properties of osthole, its therapeutic benefits ought to be elucidated in a greater array of comprehensive research studies, and the molecular mechanisms underlying these benefits should be explored.
-
Kidney disease is a common health problem worldwide. Acute or chronic injuries may interfere with kidney functions, eventually resulting in irreversible kidney damage. A number of recent studies have shown that the plant-derived natural products have an extensive potential for renal protection. ⋯ In addition, TQ exhibited significant pharmacological effects on renal cell carcinoma, renal fibrosis, and urinary calculi. The essential mechanisms involve scavenging ROS and increasing anti-oxidant activity, decreasing inflammatory mediators, inducing apoptosis, and inhibiting migration and invasion. The purpose of this review is to conclude the pharmacological effects and the potential mechanisms of TQ in renal protection, shedding new light on the exploration of medicinal phyto-protective agents targeting kidneys.
-
A newly proposed form of programmed cell death, ferroptosis, is distinct in cellular morphology, biochemical characteristics, and genetic characteristics from apoptosis, autophagy, and necrosis. Its mechanisms primarily encompass iron overload, lipid peroxidation, and amino acid metabolisms. Extensive research confirms that ferroptosis is linked to the onset and progression of various diseases that pose a threat to the central nervous system (CNS), offering new directions and targets for the mechanistic study and pharmacotherapy of CNS diseases. ⋯ TCM has also demonstrated good efficacy in treating CNS diseases. Numerous studies indicate that TCM can modulate ferroptosis to treat CNS diseases, showing promising research prospects. This paper briefly outlines the pathways and mechanisms of ferroptosis and systematically summarizes the current status and progress of TCM in regulating various CNS diseases through the ferroptosis pathway, providing new insights and directions for future TCM treatments of CNS diseases.
-
Irritable bowel syndrome (IBS) is the functional gastrointestinal disorder, characterized by abdominal pain and altered bowel habits. The interest in intestinal immune activation as a potential disease mechanism for IBS has increased exponentially in recent years. This study was designed to summarize the Chinese herbal medicine (CHM) that potentially exert protective effects against IBS through inhibition of intestinal immune activation. ⋯ The mechanisms mainly focused on the gut microbiota disorder induced alteration of the PGE2/COX2/SERT/5-HT, TLR4/MyD88/NF-κB, and BDNF/TrkB pathways. Most of the CHM alleviated IBS through interventions of intestinal immune activation via gut microbiota related to the TLR4/MyD88/NF-κB and SCF/c-kit pathways. We hope this review will provide some clues for the further development of novel candidate agents for IBS and other intestinal immune disorders.
-
Intestinal fibrosis, a common complication of inflammatory bowel disease, in particular in Crohn's disease, arises from chronic inflammation, leading to intestinal narrowing, structural damage, and functional impairment that significantly impact patients' quality of life. Current treatment options for intestinal fibrosis are limited, with surgery being the primary intervention. Traditional Chinese Medicine (TCM) has emerged as a promising approach in preventing and treating intestinal fibrosis. ⋯ To address this gap, we conducted a comprehensive review, uncovering multiple mechanisms through which TCM mitigates intestinal fibrosis. These mechanisms include immune cell balance regulation, suppression of inflammatory responses, reduction of inflammatory mediators, alleviation of colon tissue damage, restoration of intestinal function, modulation of growth factors to inhibit fibroblast activation, dynamic regulation of TIMPs and MMPs to reduce extracellular matrix deposition, inhibition of epithelial-mesenchymal transition and endothelial-mesenchymal transition, autophagy modulation, maintenance of the intestinal mucosal barrier, prevention of tissue damage by harmful factors, and regulation of cell proliferation and apoptosis. This study aims to bridge existing knowledge gaps by presenting recent evidence supporting the utilization of TCM in both clinical and experimental research settings.