The American journal of Chinese medicine
-
Hexokinase 2 (HK2), the first glycolytic rate-limiting enzyme, is closely correlated with the occurrence and progression of tumors. Effective therapeutic agents targeting HK2 are urgently needed. Bergenin has exhibited various pharmacological activities, such as antitumor properties. ⋯ A mechanistic study revealed that bergenin upregulated the protein level of phosphatase and the tensin homolog deleted on chromosome 10 (PTEN) by enhancing the interaction between PTEN and ubiquitin-specific protease 13 (USP13) and stabilizing PTEN; this eventually inhibited AKT phosphorylation and HK2 expression. Bergenin was identified as a novel therapeutic agent against glycolysis to inhibit OSCC and overcome radioresistance. Targeting PTEN/AKT/HK2 signaling could be a promising option for clinical OSCC treatment.
-
Fungi play an important role in the solution to important global problems. Making use of processes and goods that are based on fungi can help promote sustainability by making the most efficient use of natural resources. Fungi stand apart from other organisms due to their extraordinary capacity to generate organic compounds. ⋯ We provide a condensed explanation of the significance of secondary metabolites in a variety of industries, such as the pharmaceutical industry, the food industry, the textile industry, and the transportation industry. In addition to providing a better understanding of biosynthetic regulation and the possibilities of genetic engineering, improved laboratory processes for the selection of nontoxigenic fungal strains have permitted the manufacture of larger quantities of safe commercial items. The significance of fungi in industrial settings is the topic that will be investigated in this review.
-
Hepatic fibrosis (HF) is a wound healing response featuring excessive deposition of the extracellular matrix (ECM) and activation of hepatic stellate cells (HSCs) that occurs during chronic liver injury. As an initial stage of various liver diseases, HF is a reversible pathological process that, if left unchecked, can escalate into cirrhosis, liver failure, and liver cancer. HF is a life-threatening disease presenting morbidity and mortality challenges to healthcare systems worldwide. ⋯ Catabolism of LDs is characteristic of the activation of HSCs and morphological transdifferentiation of cells into contractile and proliferative myofibroblasts, resulting in the deposition of ECM and the development of HF. Recent studies have revealed that various Chinese medicines (e.g., Artemisia annua, turmeric, Scutellaria baicalensis Georgi, etc.) are able to effectively reduce the degradation of LDs in HSCs. Therefore, this study takes the modification of LDs in HSCs as an entry point to elaborate on the process of Chinese medicine intervening in the loss of LDs in HSCs and the mechanism of action for the treatment of HF.
-
Hypertrophic cardiomyopathy accompanies numerous cardiovascular diseases, and the intervention of cardiac hypertrophy is an important issue to prevent detrimental consequences. Mangiferin (MGN) is a glucosylxanthone found in Mangifera indica, which exhibits anti-oxidant and anti-inflammatory properties. Various studies have demonstrated the cardioprotective potential of MGN, but the mechanisms behind its beneficial effects have not been fully revealed. ⋯ MGN also abrogated the activation of MAPK signaling and the NF-[Formula: see text]Bp65/iNOS axis. Additionally, MGN prevented apoptosis and downregulated the elevation of AT1 in cardiomyocytes that had been exposed to Ang-II. Altogether, these results demonstrated the potential of using MGN to ameliorate the Ang-II-associated cardiac hypertrophy, which may be due to its anti-oxidant and anti-inflammatory effects through suppression of MAPK signaling and the NF-[Formula: see text]Bp65/iNOS axis.
-
Pyroptosis, an apoptotic pathway for pro-inflammatory cells, has attracted attention from researchers because of its role in the development of cardiac inflammation reactions. Chinese medicine (CM) has been given more and more attention during the pursuit of a treatment for coronary heart disease (CHD). Evidence suggests that myocardial cell pyroptosis affects the progression of CHD. ⋯ The frequently studied compounds that regulate pyroptosis in CHD include astragaloside IV (AS-IV), tanshinone IIA, aucubin, cinnamaldehyde (CD), ginsenoside Rb1, paeoniflorin, apigenin, berberine (BBR), ruscogenin (Rus), and total glucosides of paeonia (TGP). The patent drugs of CM that regulate pyroptosis in CHD include the Qishen granule (QSG), the Simiao Yong'an decoction (SMYAD), the Buyang Huanwu decoction (BYHWD), and the Shexiang Baoxin pill (SBP). Therefore, this paper reviews the pathogenesis of pyroptosis, the role of pyroptosis in CHD, and the potential therapeutic roles of CMs and their active ingredients targeting cell pyroptosis in the development of CHD.