The American journal of Chinese medicine
-
Coronavirus disease 2019 (COVID-19) is currently a worldwide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are no drugs that can specifically combat SARS-CoV-2. Besides, multiple SARS-CoV-2 variants are circulating globally. ⋯ Therefore, we searched for articles on natural products describing anti-SARS-CoV-2 activities by targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19 from academic databases. We reviewed anti-SARS-CoV-2 activities of natural products, especially those that target the SARS-CoV-2 life cycle (angiotensin-converting enzyme 2, transmembrane serine protease 2, cathepsin L, 3CL protease, PL protease, RNA-dependent RNA polymerase, and helicase) and cytokine storm in COVID-19. This review may provide a repurposed approach for the discovery of specific medications using natural products to treat COVID-19 through targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19.
-
Dendrobium polysaccharides (DPSs) have aroused people's increasing attention in recent years as a result of their outstanding edible and medicinal values and non-toxic property. This review systematically summarized recent progress in the different preparation techniques, structural characteristics, modification, various pharmacological activities and molecular mechanisms, structure-activity relationships, and current industrial applications in the medicinal, food, and cosmetics fields of DPSs. Additionally, some recommendations for future investigations were provided. ⋯ And different molecular weights, monosaccharide compositions, linkage types, and modifications could largely affect DPSs' bioactivities (e.g., immunomodulatory, anti-diabetic, hepatoprotective, gastrointestinal protective, antitumor, anti-inflammatory, and anti-oxidant activities). It was worth mentioning that DPSs were significant pharmaceutical remedies and therapeutic supplements especially due to their strong immunity enhancement abilities. We hope that this review will lay a solid foundation for further development and applications of Dendrobium polysaccharides.
-
Hypoxic microenvironment and dysregulated endoplasmic reticulum stress/unfolded protein response (UPR) system are considered important factors that promote cancer progression. Although osthole extracted from Cnidium monnieri(Fructus Cnidii) has been confirmed to exhibit an anticancer activity in various cancers, the effects of osthole in hypoxic colon cancer cells have not been explored. Therefore, the aim of this study was to examine whether osthole has an inhibitory effect on hypoxic colon cancer HCT116 cells and further investigate the underlying molecular mechanisms. ⋯ Co-treatment of hypoxic HCT116 cells with osthole greatly increased the sensitivity to cisplatin and the expressions of phospho-EIF2[Formula: see text] and cleaved caspase 3. Collectively, the inhibitory effect of osthole in hypoxic HCT116 cells may be associated with EIF2[Formula: see text] phosphorylation-mediated apoptosis and translational repression of HIF-1[Formula: see text]. Taken together, osthole may be a potential agent in the treatment of colon cancer.
-
Andrographolide (APE) has been used for COVID-19 treatment in various clinical settings in South-East Asia due to its benefits on reduction of viral clearance and prevention of disease progression. However, the limitation of APE clinical use is the high incidence of adverse events. The objective of this study was to find the optimal dosage regimens of APE for COVID-19 treatment. ⋯ One hundred virtual populations (50 males and 50 females) were simulated for oral and intravenous infusion formulations of APE. The eligible PBPK/PD models successfully predicted optimal dosage regimens and formulations of APE for prevention of disease progression and/or reduction of viral clearance time. Additionally, APE should be co-administered with other antiviral drugs to enhance therapeutic efficacy for COVID-19 treatment.
-
Combining innocuous natural products with cytotoxic agents may enhance the effectiveness of chemotherapy. Tangeretin is a citrus flavonoid that has antineoplastic properties, but its mechanism of action is still unknown. Here, we used a high throughput-screening (HTS) platform to screen for drugs that may synergize with tangeretin and confirmed the top hits against colorectal cancer (CRC) cells in vitro and in vivo. 5-Fluorouracil (5-FU) and PI3K/Akt inhibitors have come out as top hits that show a strong synergy effect with tangeretin by HTS. ⋯ In 5-FU treated cells, tangeretin inhibited miR-21 induction, rescued the expression of the target PTEN, reduced Akt activation, and induced autophagy. Together, our data indicated that a natural product, such as tangeretin, can modulate miR-21 expression and that this pathway might be a potential therapeutic target for CRC. Combining tangeretin with 5-FU may be useful in the clinic, since 5-FU is the current first line drug for treating CRC.