ACS infectious diseases
-
ACS infectious diseases · Jul 2019
ReviewDetecting Vertical Zika Transmission: Emerging Diagnostic Approaches for an Emerged Flavivirus.
Zika virus (Zika) was recently responsible for a massive epidemic that spread throughout Latin America and beyond. Though Zika is typically asymptomatic or self-limiting, the sheer numbers of Zika infections led to the identification of unexpected phenotypes including sexual transmission, Guillain-Barré syndrome, and teratogenicity. Thousands of infants in South, Central, and North America have now been born with microcephaly or one of a number of fetal anomalies constituting the congenital Zika syndrome (CZS). ⋯ Furthermore, existing and emerging diagnostic tools may not be widely available due to limitations in resources and infrastructure of health systems in affected areas. Improvements in assay parameters as well as advances in platforms and deployability hold promise for optimizing diagnostic approaches for congenital Zika infection. The diagnostic tools and technologies under development must be integrated with forthcoming clinical knowledge of congenital Zika infection to fully realize the value that laboratory testing holds for diagnosing in utero mother to child transmission but also for understanding, predicting, and managing the health outcomes due to congenital Zika infection.
-
ACS infectious diseases · May 2018
Antisense Inhibitors Retain Activity in Pulmonary Models of Burkholderia Infection.
The Burkholderia cepacia complex is a group of Gram-negative bacteria that are opportunistic pathogens in immunocompromised individuals, such as those with cystic fibrosis (CF) or chronic granulomatous disease (CGD). Burkholderia are intrinsically resistant to many antibiotics and the lack of antibiotic development necessitates novel therapeutics. Peptide-conjugated phosphorodiamidate morpholino oligomers are antisense molecules that inhibit bacterial mRNA translation. ⋯ PPMOs also reduced the bacterial burden in the lungs of immunocompromised CyBB mice, a model of CGD. Finally, the use of multiple PPMOs was efficacious in inhibiting the growth of both Burkholderia and Pseudomonas in an in vitro model of coinfection. Due to the intrinsic resistance of Burkholderia to traditional antibiotics, PPMOs represent a novel and viable approach to the treatment of Burkholderia infections.