Journal of neurosurgery. Spine
-
Spinal cord injury (SCI) often results in considerable permanent neurological impairment, and unfortunately, the successful translation of effective treatments from laboratory models to human patients is lacking. This may be partially attributed to differences in anatomy, physiology, and scale between humans and rodent models. One potentially important difference between the rodent and human spinal cord is the presence of a significant CSF volume within the intrathecal space around the human cord. While the CSF may "cushion" the spinal cord, pressure waves within the CSF at the time of injury may contribute to the extent and severity of the primary injury. The objective of this study was to develop a model of contusion SCI in a miniature pig and establish the feasibility of measuring spinal CSF pressure during injury. ⋯ A new model of contusion SCI was developed to measure spinal CSF pressures during the SCI event. The results suggest that the Yucatan miniature pig is an appropriate model for studying CSF, spinal cord, and dura interactions during injury. With further development and characterization it may be an appropriate in vivo large-animal model of SCI to answer questions regarding pathological changes, therapeutic safety, or treatment efficacy, particularly where humanlike dimensions and physiology are important.
-
Sagittal spinal misalignment (SSM) is an established cause of pain and disability. Treating physicians must be familiar with the radiographic findings consistent with SSM. ⋯ In this review the authors describe the proper analysis of spinopelvic alignment for surgical planning. Online videos supplement the text to better illustrate the key concepts.
-
Multicenter Study
Sagittal realignment failures following pedicle subtraction osteotomy surgery: are we doing enough?: Clinical article.
Pedicle subtraction osteotomy (PSO) is a surgical procedure that is frequently performed on patients with sagittal spinopelvic malalignment. Although it allows for substantial spinopelvic realignment, suboptimal realignment outcomes have been reported in up to 33% of patients. The authors' objective in the present study was to identify differences in radiographic profiles and surgical procedures between patients achieving successful versus failed spinopelvic realignment following PSO. ⋯ Patients with failed PSO realignments had significantly larger preoperative spinopelvic deformity than patients in whom realignment was successful. Despite their apparent need for greater correction, the patients in the failed realignment group only received the same amount of correction as those in the successfully realigned patients. A single-level standard PSO may not achieve optimal outcome in patients with high preoperative spinopelvic sagittal malalignment. Patients with large spinopelvic deformities should receive larger osteotomies or additional corrective procedures beyond PSOs to avoid undercorrection.
-
Heterotopic ossification (HO) after cervical arthroplasty can limit the mobility of an artificial disc. In this study the authors used CT scanning to assess the formation of HO with the goal of investigating the correlation between the carpentry of arthroplasty, formation of HO, mobility, and clinical outcomes. ⋯ Shell kyphosis and inadequate endplate coverage have adverse effects on the formation of HO and segmental mobility after cervical arthroplasty with the Bryan artificial disc. Appropriate carpentry is the more important factor in determining the maintenance of segmental motion. Although the midterm clinical outcome remained similarly good regardless of HO, the carpentry of cervical arthroplasty should not be overlooked. Further studies are needed to clarify the etiology of HO.
-
The objective of this study was to compare the stiffness and range of motion (ROM) of 4 cervical spine constructs and the intact condition. The 4 constructs consisted of 3-level anterior cervical discectomy with anterior plating, 1-level discectomy and 1-level corpectomy with anterior plating, 2-level corpectomy with anterior plating, and 2-level corpectomy with anterior plating and posterior fixation. ⋯ This study demonstrates that segmental plate fixation (3-level discectomy) affords the same stiffness and ROM as circumferential fusion in 2-level cervical spine corpectomy in the immediate postoperative setting. This obviates the need for staged circumferential procedures for multilevel cervical spondylotic myelopathy. Given that the posterior segmental instrumentation confers significant stability to a multilevel cervical corpectomy, the surgeon should strongly consider the placement of segmental posterior instrumentation to significantly improve the overall stability of the fusion construct after a 2-level cervical corpectomy.