CJEM
-
Prompt diagnosis of acute coronary syndrome (ACS) using a 12-lead electrocardiogram (ECG) is a critical task for emergency physicians. While computerized algorithms for ECG interpretation are limited in their accuracy, machine learning (ML) models have shown promise in several areas of clinical medicine. We performed a systematic review to compare the performance of ML-based ECG analysis to clinician or non-ML computerized ECG interpretation in the diagnosis of ACS for emergency department (ED) or prehospital patients. ⋯ ML models have overall higher discrimination and sensitivity but lower specificity than clinicians and non-ML software in ECG interpretation for the diagnosis of ACS. ML-based ECG interpretation could potentially serve a role as a "safety net", alerting emergency care providers to a missed acute MI when it has not been diagnosed. More rigorous primary research is needed to definitively demonstrate the ability of ML to outperform clinicians at ECG interpretation.