The FEBS journal
-
A major unmet clinical need exists for long-acting neurotherapeutics to alleviate chronic pain in patients unresponsive to available nonaddictive analgesics. Herein, a new strategy is described for the development of potent and specific inhibitors of the neuronal exocytosis of transmitters and pain mediators that exhibit unique antinociceptive activity. This entailed recombinant production in Escherichia coli of two serotypes of botulinum neurotoxin (BoNT) (BoNT(A) and BoNT(E) ), which are proteins that are known to block the release of transmitters by targeting and entering nerve endings, where their proteases cleave and inactivate a protein, synaptosomal protein of M(r) 25 000 (SNAP-25), that is essential for Ca(2+) -regulated exocytosis. ⋯ As this enzyme lasted for more than 1 month (as compared with 5 days for BoNT(E) alone), such a dramatic extension in the lifetime of this BoNT(E) protease is attributable to a stabilizing influence of the BoNT(A) mutant. Most importantly, injecting this novel biotherapeutic into the foot pads of rats resulted in extended amelioration of inflammatory pain. Thus, a new generation of biotherapeutics has been created with the potential to give long-term relief of pain.
-
A multikinase inhibitor of the Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, sorafenib, is increasingly being used in the management of hepatocellular carcinoma, and its combination with conventional chemotherapeutics has stimulated particular interest. Although the combination of sorafenib with doxorubicin (DOX) is presently being investigated in a phase III randomized trial, little is known about the molecular mechanisms of their interaction. Because DOX causes cell death through upregulation of the MEK/ERK pathway, and sorafenib has an opposite influence on the same cascade, we hypothesized that co-treatment with these drugs may lead to an antagonistic effect. ⋯ The role of sorafenib-induced degradation of cyclin D1 in the suppression of DOX efficiency is discussed. In conclusion, MEK/ERK counteraction, stimulation of survival via Akt and dysregulation of cyclin D1 could contribute to the escape from DOX-induced autophagy and thus promote cancer cell survival. The use of MEK/ERK inhibitors in combination with chemotherapeutics, intended to enhance anticancer efficacy, requires the consideration of possible antagonistic effects.
-
Mitochondria are dynamic organelles that undergo continual fusion and fission to maintain their morphology and functions, but the mechanism involved is still not clear. Here, we investigated the effect of mitochondrial oxidative stress triggered by high-fluence low-power laser irradiation (HF-LPLI) on mitochondrial dynamics in human lung adenocarcinoma cells (ASTC-a-1) and African green monkey SV40-transformed kidney fibroblast cells (COS-7). Upon HF-LPLI-triggered oxidative stress, mitochondria displayed a fragmented structure, which was abolished by exposure to dehydroascorbic acid, a reactive oxygen species scavenger, indicating that oxidative stress can induce mitochondrial fragmentation. ⋯ Notably, overexpression of Drp1 increased mitochondrial fragmentation and promoted HF-LPLI-induced apoptosis through promoting cytochrome c release and caspase-9 activation, whereas overexpression of mitofusin 2 (Mfn2), a profusion protein, caused the opposite effects. Also, neither Drp1 overexpression nor Mfn2 overexpression affected mitochondrial reactive oxygen species generation, mitochondrial depolarization, or Bax activation. We conclude that mitochondrial oxidative stress mediated through Drp1 and Mfn2 causes an imbalance in mitochondrial fission-fusion, resulting in mitochondrial fragmentation, which contributes to mitochondrial and cell dysfunction.
-
A fundamental role for protein-protein interactions in the organization of signal transduction pathways is evident. Anchoring, scaffolding and adapter proteins function to enhance the precision and directionality of these signaling events by bringing enzymes together. ⋯ This family of proteins assembles enzyme complexes containing the cAMP-dependent protein kinase, phosphoprotein phosphatases, phosphodiesterases and other signaling effectors to optimize cellular responses to cAMP and other second messengers. Selected A-kinase anchoring protein signaling complexes are highlighted in this minireview.
-
Proteolytic processes in the extracellular matrix are a major influence on cell adhesion, migration, survival, differentiation and proliferation. The syndecan cell-surface proteoglycans are important mediators of cell spreading on extracellular matrix and respond to growth factors and other biologically active polypeptides. The ectodomain of each syndecan is constitutively shed from many cultured cells, but is accelerated in response to wound healing and diverse pathophysiological events. ⋯ It is known that the family of syndecans can be shed by a variety of matrix proteinase, including many metzincins. Shedding is particularly active in proliferating and invasive cells, such as cancer cells, where cell-surface components are continually released. Here, recent research into the shedding of syndecans and its physiological relevance are assessed.