PLoS medicine
-
Tuberculosis, which is caused by Mycobacterium tuberculosis, remains one of the leading causes of mortality worldwide. The C-type lectin DC-SIGN is known to be the major M. tuberculosis receptor on human dendritic cells. We reasoned that if DC-SIGN interacts with M. tuberculosis, as well as with other pathogens, variation in this gene might have a broad range of influence in the pathogenesis of a number of infectious diseases, including tuberculosis. ⋯ Our observations suggest that the two -871G and -336A variants confer protection against tuberculosis. In addition, the geographic distribution of these two alleles, together with their phylogenetic status, suggest that they may have increased in frequency in non-African populations as a result of host genetic adaptation to a longer history of exposure to tuberculosis. Further characterization of the biological consequences of DC-SIGN variation in tuberculosis will be crucial to better appreciate the role of this lectin in interactions between the host immune system and the tubercle bacillus as well as other pathogens.
-
Greely discusses unanswered ethical and legal issues, such as those surrounding the creation of embryos, derivation of cell lines, uses of cell lines, and questions of intellectual property.
-
Over 75% of the annual estimated 9.5 million deaths in India occur in the home, and the large majority of these do not have a certified cause. India and other developing countries urgently need reliable quantification of the causes of death. They also need better epidemiological evidence about the relevance of physical (such as blood pressure and obesity), behavioral (such as smoking, alcohol, HIV-1 risk taking, and immunization history), and biological (such as blood lipids and gene polymorphisms) measurements to the development of disease in individuals or disease rates in populations. We report here on the rationale, design, and implementation of the world's largest prospective study of the causes and correlates of mortality. ⋯ This study will reliably document not only the underlying cause of child and adult deaths but also key risk factors (behavioral, physical, environmental, and eventually, genetic). It offers a globally replicable model for reliably estimating cause-specific mortality using VA and strengthens India's flagship mortality monitoring system. Despite the misclassification that is still expected, the new cause-of-death data will be substantially better than that available previously.
-
Review Comparative Study
Are racial and ethnic minorities less willing to participate in health research?
It is widely claimed that racial and ethnic minorities, especially in the US, are less willing than non-minority individuals to participate in health research. Yet, there is a paucity of empirical data to substantiate this claim. ⋯ We found very small differences in the willingness of minorities, most of whom were African-Americans and Hispanics in the US, to participate in health research compared to non-Hispanic whites. These findings, based on the research enrollment decisions of over 70,000 individuals, the vast majority from the US, suggest that racial and ethnic minorities in the US are as willing as non-Hispanic whites to participate in health research. Hence, efforts to increase minority participation in health research should focus on ensuring access to health research for all groups, rather than changing minority attitudes.
-
There are at least two phases of beta-cell death during the development of autoimmune diabetes: an initiation event that results in the release of beta-cell-specific antigens, and a second, antigen-driven event in which beta-cell death is mediated by the actions of T lymphocytes. In this report, the mechanisms by which the macrophage-derived cytokine interleukin (IL)-1 induces beta-cell death are examined. IL-1, known to inhibit glucose-induced insulin secretion by stimulating inducible nitric oxide synthase expression and increased production of nitric oxide by beta-cells, also induces beta-cell death. ⋯ These findings indicate that IL-1 induces beta-cell necrosis and support the hypothesis that macrophage-derived cytokines may participate in the initial stages of diabetes development by inducing beta-cell death by a mechanism that promotes antigen release (necrosis) and islet inflammation (HMGB1 release).