PLoS medicine
-
Maternal and perinatal mortality could be reduced if all women delivered in settings where skilled attendants could provide emergency obstetric care (EmOC) if complications arise. Research on determinants of skilled attendance at delivery has focussed on household and individual factors, neglecting the influence of the health service environment, in part due to a lack of suitable data. The aim of this study was to quantify the effects of distance to care and level of care on women's use of health facilities for delivery in rural Zambia, and to compare their population impact to that of other important determinants. ⋯ Lack of geographic access to emergency obstetric care is a key factor explaining why most rural deliveries in Zambia still occur at home without skilled care. Addressing geographic and quality barriers is crucial to increase service use and to lower maternal and perinatal mortality. Linking datasets using GIS has great potential for future research and can help overcome the neglect of health system factors in research and policy. Please see later in the article for the Editors' Summary.
-
Health systems research and development is needed to support the global malaria eradication agenda. In this paper, we (the malERA Consultative Group on Health Systems and Operational Research) focus on the health systems needs of the elimination phase of malaria eradication and consider groupings of countries at different stages along the pathway to elimination. ⋯ We review recent technological and theoretical developments related to health systems and the renewed commitment to strengthening health systems for universal access and greater equity. Finally, we identify a number of needs for research and development, including tools for analyzing and improving effective coverage and strengthening decision making and discuss the relevance of these needs at all levels of the health system from the community to the international level.
-
Discipline-specific Malaria Eradication Research Agenda (malERA) Consultative Groups have recognized several cross-cutting issues that must be addressed to prevent repetition of some of the mistakes of past malaria elimination campaigns in future programs. Integrated research is required to develop a decision-making framework for the switch from malaria control to elimination. Similarly, a strong economic case is needed for the very long-term financial support that is essential for elimination. ⋯ Because sustained malaria elimination is dependent on a functioning health system, a further key cross-cutting research question is to determine how inputs for malaria can strengthen health systems, information systems, and overall health outcomes. Implementation of elimination programs must also be accompanied by capacity building and training to allow the assessment of the impact of new combinations of interventions, new roles for different individuals, and the operational research that is needed to facilitate program expansion. Finally, because community engagement, knowledge management, communication, political, and multisectoral support are critical but poorly understood success factors for malaria elimination, integrated research into these issues is vital.
-
Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. ⋯ For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population.