PLoS medicine
-
Comparative Study
Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records.
Emergency admissions are a major source of healthcare spending. We aimed to derive, validate, and compare conventional and machine learning models for prediction of the first emergency admission. Machine learning methods are capable of capturing complex interactions that are likely to be present when predicting less specific outcomes, such as this one. ⋯ The use of machine learning and addition of temporal information led to substantially improved discrimination and calibration for predicting the risk of emergency admission. Model performance remained stable across a range of prediction time windows and when externally validated. These findings support the potential of incorporating machine learning models into electronic health records to inform care and service planning.
-
Pythia is an automated, clinically curated surgical data pipeline and repository housing all surgical patient electronic health record (EHR) data from a large, quaternary, multisite health institute for data science initiatives. In an effort to better identify high-risk surgical patients from complex data, a machine learning project trained on Pythia was built to predict postoperative complication risk. ⋯ Extracting and curating a large, local institution's EHR data for machine learning purposes resulted in models with strong predictive performance. These models can be used in clinical settings as decision support tools for identification of high-risk patients as well as patient evaluation and care management. Further work is necessary to evaluate the impact of the Pythia risk calculator within the clinical workflow on postoperative outcomes and to optimize this data flow for future machine learning efforts.
-
Multicenter Study
Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study.
Resuscitated cardiac arrest is associated with high mortality; however, the ability to estimate risk of adverse outcomes using existing illness severity scores is limited. Using in-hospital data available within the first 24 hours of admission, we aimed to develop more accurate models of risk prediction using both logistic regression (LR) and machine learning (ML) techniques, with a combination of demographic, physiologic, and biochemical information. ⋯ ML approaches significantly enhance predictive discrimination for mortality following cardiac arrest compared to existing illness severity scores and LR, without the use of pre-hospital data. The discriminative ability of these ML models requires validation in external cohorts to establish generalisability.
-
The current acute kidney injury (AKI) risk prediction model for patients undergoing percutaneous coronary intervention (PCI) from the American College of Cardiology (ACC) National Cardiovascular Data Registry (NCDR) employed regression techniques. This study aimed to evaluate whether models using machine learning techniques could significantly improve AKI risk prediction after PCI. ⋯ Machine learning techniques and data-driven approaches resulted in improved prediction of AKI risk after PCI. The results support the potential of these techniques for improving risk prediction models and identification of patients who may benefit from risk-mitigation strategies.
-
Thomas Platts-Mills and Matthew Perzanowski provide their expert Perspective on a translational study from Custovic and colleagues that identifies pairings of IgE that show value in estimating risk of concurrent asthma.