RNA biology
-
Extracellular vesicles (EVs) contain a wide range of RNA types with a reported prevalence of non-coding RNA. To date a comprehensive characterization of the protein coding transcripts in EVs is still lacking. We performed RNA-Sequencing (RNA-Seq) of 2 EV populations and identified a small fraction of transcripts that were expressed at significantly different levels in large oncosomes and exosomes, suggesting they may mediate specialized functions. ⋯ The EV signature was independently identified in plasma of patients with breast cancer by RNA-Seq. Furthermore, several transcripts differentially expressed in EVs from patients versus controls mirrored differential expression between normal and breast cancer tissues. Altogether, this largest high-throughput profiling of EV mRNA demonstrates that EVs carry tumor-specific alterations and can be interrogated as a source of cancer-derived cargo.
-
Melanoma cells release different types of extracellular vesicles (EVs) into the extracellular milieu that are involved with communication and signaling in the tumor microenvironment. Subsets of EVs include exosomes, microvesicles, and apoptotic bodies that carry protein and genetic (RNA) cargos. To define the contribution of the RNA cargo of melanoma cell derived EVs we performed small RNA sequencing to identify different small RNAs in the EV subsets. ⋯ Hierarchical clustering showed enrichment of specific miRNAs in exosomes, including hsa-miR-214-3p, hsa-miR-199a-3p and hsa-miR-155-5p, all being associated with melanoma progression. Comparison of exosomal miRNAs with miRNAs in clinical melanoma samples indicate that multiple miRNAs in exosomes also are expressed specifically in melanoma tissues, but not in benign naevi. This study shows for the first time the presence of distinct small RNAs in subsets of EVs released by melanoma cells, with significant similarities to clinical melanoma tissue, and provides unique insights into the contribution of EV associated extracellular RNA in cancer.
-
MicroRNAs (miRNAs) contribute to a wide variety of human diseases by regulating gene expression, leading to imbalances in gene regulatory networks. To discover novel hepatocellular carcinoma (HCC)-related miRNA-target axes and to elucidate their functions, we here performed a systematic investigation combining biological data acquisition and integration, miRNA-target prediction, network construction, functional assay and clinical validation. As a result, a total of 117 HCC differentially expressed miRNAs were identified, and 728 high confident target genes of these miRNAs were collected. ⋯ Further clinical evidence also highlighted the prognostic potential of miR-19a/Cyclin D1 axis in HCC. In conclusion, this systematic investigation provides a framework to identify featured miRNAs and their target genes which are potent effectors in the occurrence and development of HCC. More importantly, miR-19a/Cyclin D1 axis might have promising applications as a therapeutic target and a prognostic marker for patients with HCC.
-
The sequence diversity of individual human genomes has been extensively analyzed for variations and phenotypic implications for mRNA, miRNA, and long non-coding RNA genes. TRNA (tRNA) also exhibits large sequence diversity in the human genome, but tRNA gene sequence variation and potential functional implications in individual human genomes have not been investigated. Here we capitalize on the sequencing data from the 1000-genomes project to examine the diversity of tRNA genes in the human population. ⋯ Unexpectedly, two abundant new tRNA genes contain base-pair mismatches in the anticodon stem. We experimentally determined that these two new tRNAs have altered structures in vitro; however, one new tRNA is not aminoacylated but extremely stable in HeLa cells, suggesting that this new tRNA can be used for non-canonical function. Our results show that at the scale of human population, tRNA genes are more diverse than conventionally understood, and some new tRNAs may perform non-canonical, extra-translational functions that may be linked to human health and disease.
-
MicroRNAs (miRNAs) are important players of post-transcriptional gene regulation. Individual miRNAs can target multiple mRNAs and a single mRNA can be targeted by many miRNAs. We hypothesized that miRNAs select and regulate their targets based on their own expression levels, those of their target mRNAs and triggered feedback loops. ⋯ These findings were supported by gene modulation studies using endogenous levels of miR-29, -1 and -206 and a luciferase reporter system in multiple cell lines. Finally, we determined that the miR-17-92 cluster affected cell viability in a dose-dependent manner. In conclusion, we have shown that miRNAs potentially select their targets in a dose-dependent and nonlinear fashion that affects biological function; and this represents a novel mechanism by which miRNAs orchestrate the finely tuned balance of cell function.