American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics
-
Am. J. Med. Genet. B Neuropsychiatr. Genet. · Oct 2020
De novo STXBP1 mutation in a child with developmental delay and spasticity reveals a major structural alteration in the interface with syntaxin 1A.
STXBP1, also known as Munc-18, is a master regulator of neurotransmitter release and synaptic function in the human brain through its direct interaction with syntaxin 1A. STXBP1 binds syntaxin 1A is an inactive conformational state. STXBP1 decreases its binding affinity to syntaxin upon phosphorylation, enabling syntaxin 1A to engage in the SNARE complex, leading to neurotransmitter release. ⋯ We applied the same MD methodology to seven additional previously reported STXBP1 mutations and reveal that the stability of the STXBP1-syntaxin 1A interface correlates with the reported clinical phenotypes. This study provides a direct link between the outcome of a novel variant in STXBP1 and protein structure and dynamics. The structural change upon mutation drives an alteration in synaptic function.
-
Am. J. Med. Genet. B Neuropsychiatr. Genet. · Jul 2020
Maternal and paternal effects on offspring internalizing problems: Results from genetic and family-based analyses.
It is unclear to what extent parental influences on the development of internalizing problems in offspring are explained by indirect genetic effects, reflected in the environment provided by the parent, in addition to the genes transmitted from parent to child. In this study, these effects were investigated using two innovative methods in a large birth cohort. Using maternal-effects genome complex trait analysis (M-GCTA), the effects of offspring genotype, maternal or paternal genotypes, and their covariance on offspring internalizing problems were estimated in 3,801 mother-father-child genotyped trios. ⋯ There were no significant maternal or paternal genetic effects on offspring anxiety or depressive symptoms at age 8, beyond the effects transmitted via the genetic pathway between parents and children. However, indirect maternal genetic effects explained a small, but nonsignificant, proportion of variance in childhood depressive symptoms in both the M-GCTA (~4%) and pedigree (~8%) analyses. Our results suggest that parental effects on offspring internalizing problems are predominantly due to transmitted genetic variants, rather than the indirect effect of parental genes via the environment.
-
Am. J. Med. Genet. B Neuropsychiatr. Genet. · Jan 2020
Exploratory analysis of genetic variants influencing molecular traits in cerebral cortex of suicide completers.
Genetic factors have been implicated in suicidal behavior. It has been suggested that one of the roles of genetic factors in suicide could be represented by the effect of genetic variants on gene expression regulation. Alteration in the expression of genes participating in multiple biological systems in the suicidal brain has been demonstrated, so it is imperative to identify genetic variants that could influence gene expression or its regulatory mechanisms. ⋯ The xQTLs identified influence the expression of genes involved in neurodevelopment and cell organization. Two of the eQTLs identified (rs8065311 and rs1019238) were previously associated with cannabis dependence, highlighting a candidate genetic variant for the increased suicide risk in subjects with substance use disorders. Our findings suggest that genetic variants may regulate gene expression in the prefrontal cortex of suicides through the modulation of promoter and enhancer activity, and to a lesser extent, binding transcription factors.
-
Am. J. Med. Genet. B Neuropsychiatr. Genet. · Sep 2019
Genes known to escape X chromosome inactivation predict co-morbid chronic musculoskeletal pain and posttraumatic stress symptom development in women following trauma exposure.
Co-morbid chronic musculoskeletal pain (CMSP) and posttraumatic stress symptoms (PTSS) are frequent sequelae of motor vehicle collision, are associated with greater disability than either outcome alone, and are more prevalent in women than men. In the current study we assessed for evidence that gene transcripts originating from the X chromosome contribute to sex differences in vulnerability to CMSP and PTSS after motor vehicle collision. Nested samples were drawn from a longitudinal study of African American individuals, and CMSP (0-10 numeric rating scale) and PTSS (impact of events scale, revised) outcomes were assessed 6 months following motor vehicle collision. ⋯ Secondary analyses assessing gene ontology relationships between these genes identified an enrichment in genes known to influence neuronal plasticity. Further, the relationship of expression of two critical regulators of X chromosome inactivation, X-inactive specific transcript (XIST) and Yin Yang 1 (YY1), was different in women developing CMSP and PTSS. Together, these data suggest that X chromosome genes that escape inactivation may contribute to sex differences in vulnerability to CMSP and PTSS after motor vehicle collision.
-
Am. J. Med. Genet. B Neuropsychiatr. Genet. · Jun 2018
Review Case ReportsEpigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review.
Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p. ⋯ Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development.