Journal of biomechanics
-
Journal of biomechanics · Mar 2018
Are axial intervertebral disc biomechanics determined by osmosis?
The intervertebral disc faces high compressive forces during daily activities. Axial compression induces creeping fluid loss and reduction in disc height. With degeneration, disc fluids and height are progressively lost, altering biomechanics. ⋯ Reduction of water content and amplitude of creep and recovery showed similarity to degenerative disc biomechanics. However, the time-constants increased, indicating that the hydraulic permeability was reduced, in contrast to what happens with degeneration. This suggests that besides the osmotic gradient, the permeability of the tissues determines healthy intervertebral disc biomechanics.
-
Journal of biomechanics · Mar 2018
Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation.
Understanding the effect of impact loading on the mechanical response of the intervertebral disc (IVD) is valuable for investigating injury mechanisms and devising effective therapeutic modalities. This study used 24 porcine thoracic motion segments to characterize the mechanical response of intact (N = 8), degenerated (Trypsin-denatured, N = 8), and repaired (Genepin-treated, N = 8) IVDs subject to impact loading. A meta-model analysis of poroelastic finite element simulations was used in combination with ex-vivo creep and impact tests to extract the material properties. ⋯ It is concluded that the disc time-dependent response significantly changes with disc degeneration. Cross-linker Genipin has the potential to recover the hydraulic permeability and can potentially change the time dependent response, particularly in the IDP. This is the first study, to our best knowledge, which explores the effect of impact loading on the healthy, degenerated and repaired IVD using both creep and impact validation tests.
-
Journal of biomechanics · Mar 2018
Three-dimensional primary and coupled range of motions and movement coordination of the pelvis, lumbar and thoracic spine in standing posture using inertial tracking device.
Evaluation of spinal range of motions (RoMs) and movement coordination between its segments (thorax, lumbar, and pelvis) has clinical and biomechanical implications. Previous studies have not recorded three-dimensional primary/coupled motions of all spinal segments simultaneously. Moreover, magnitude/direction of the coupled motions of the thorax/pelvis in standing posture and lumbopelvic rhythms in the frontal/transverse planes have not been investigated. ⋯ The spine had different primary RoMs in different planes/directions (flexion: lumbar: 55.4 ± 12.4°, pelvis: 42.8 ± 21.6°, and T1-T12 thoracic: 19.9 ± 6.4°, extension: lumbar: 23.4 ± 10.1°, thoracic: 11.7 ± 3.4°, and pelvis: 10.2 ± 6.4°, left/right lateral bending: thoracic: 24.5 ± 7.4°/26.5 ± 6.1°, lumbar: 16.4 ± 7.2°/18.3 ± 5.7°, and pelvis: 11.0 ± 4.4°/9.3 ± 6.2°, and left/right axial rotation: thoracic: 33.5 ± 10.0°/37.1 ± 11.7°, pelvis: 31.6 ± 12.5°/27.2 ± 12.0° and lumbar: 7.5 ± 4.5°/9.2 ± 7.3°). Pelvis, lumbar and thoracic spine had different/varying contributions/rhythms to generate total trunk (T1) movement, both within and between planes. Pattern of the coupled motions was inconsistent between subjects but side bending was generally associated with twisting to the same side at the thoracic spine and to the opposite side at the lumbar spine.