Journal of biomechanics
-
Journal of biomechanics · Sep 2016
Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study.
There is a large, at times contradictory, body of research relating spinal curvature to Low Back Pain (LBP). Mechanical load is considered as important factor in LBP etiology. Geometry of the spinal structures and sagittal curvature of the lumbar spine govern its mechanical behavior. ⋯ However, resistance of the facet joints to extension was more important in the Norm- and Hyper-L spines which reduced the disc compression. The spinal curvature strongly influenced the magnitude and location of load on the spinal components and also altered the kinematics and load-sharing particularly in extension. Consideration of the subject-specific geometry and sagittal curvature should be an integral part of mechanical analysis of the lumbar spine.
-
Journal of biomechanics · Jul 2016
Multi-segment analysis of spinal kinematics during sit-to-stand in patients with chronic low back pain.
While alterations in spinal kinematics have been frequently reported in patients with chronic low back pain (CLBP), a better characterization of the kinematics during functional activities is needed to improve our understanding and therapeutic solutions for this condition. Recent studies on healthy subjects showed the value of analyzing the spine during sit-to-stand transition (STST) using multi-segment models, suggesting that additional knowledge could be gained by conducting similar assessments in CLBP patients. The objectives of this study were to characterize three dimensional kinematics at the lower lumbar (LLS), upper lumbar (ULS), lower thoracic (LTS) and upper thoracic (UTS) joints during STST, and to test the hypothesis that CLBP patients perform this movement with smaller angle and angular velocity compared to asymptomatic controls. ⋯ Significant differences in the form of smaller sagittal-plane angle and smaller angular velocity in the patient group compared to the control group were observed at these three joints. This indicated a more rigid spine in the patient group and suggested that CLBP rehabilitation could potentially be enhanced by targeting movement deficits in functional activities. The results further recommended the analysis of STST kinematics using a pelvis-lumbar-thoracic model including lower and upper lumbar and thoracic segments.
-
Journal of biomechanics · Jun 2016
Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression.
Disc hydration is controlled by fluid imbibition and exudation and hence by applied load magnitude and history, internal osmotic pressure and disc conditions. It affects both the internal load distribution and external load-bearing of a disc while variations therein give rise to the disc time-dependent characteristics. This study aimed to evaluate the effect of changes in compression preload magnitude on the disc axial cyclic compression stiffness under physiological loading. ⋯ Differences between disc height losses in high cyclic loads and between stiffness in both load increase and release phases were significant for 0 and 0.06MPa vs. 0.28MPa preload. Results highlight the significant role of disc preload magnitude/history and hence disc height and hydration on disc stiffness in loading/unloading and disc height loss in loading periods. Proper preconditioning and hence hydration level should be achieved if recovery in height loss similar to in vivo conditions is expected.
-
Journal of biomechanics · Jun 2016
Weight-bearing condyle motion of the knee before and after cruciate-retaining TKA: In-vivo surgical transepicondylar axis and geometric center axis analyses.
An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a cruciate-retaining (CR)-TKA using two flexion axes: surgical transepicondylar axis (sTEA) and geometric center axis (GCA). ⋯ At deep flexion (>90°), both condyles were significantly higher (>2mm, p<0.01) than the healthy knees. Anterior femoral translation of the TKA knee was more pronounce at mid-flexion, whereas limited posterior translation was found at deep flexion. These data suggest that a well-balanced knee intra-operatively might not necessarily result in mid-flexion and deep flexion balance during functional weight-bearing motion, implying mid-flexion instability and deep flexion tightness of the knee.
-
Journal of biomechanics · Jun 2016
A springy pendulum could describe the swing leg kinetics of human walking.
The dynamics of human walking during various walking conditions could be qualitatively captured by the springy legged dynamics, which have been used as a theoretical framework for bipedal robotics applications. However, the spring-loaded inverted pendulum model describes the motion of the center of mass (CoM), which combines the torso, swing and stance legs together and does not explicitly inform us as to whether the inter-limb dynamics share the springy legged dynamics characteristics of the CoM. In this study, we examined whether the swing leg dynamics could also be represented by springy mechanics and whether the swing leg stiffness shows a dependence on gait speed, as has been observed in CoM mechanics during walking. ⋯ The joint forces of the swing leg were well represented by the springy pendulum model at various walking speeds with a regression coefficient of R(2)>0.8. The swing leg stiffness increased with walking speed and was correlated with the swing frequency, which is consistent with previous observations from CoM dynamics described using the compliant leg. These results suggest that the swing leg also shares the springy dynamics, and the compliant walking model could be extended to better present swing leg dynamics.