Journal of biomechanics
-
Journal of biomechanics · Sep 2015
Evaluation of a laboratory model of human head impact biomechanics.
This work describes methodology for evaluating laboratory models of head impact biomechanics. Using this methodology, we investigated: how closely does twin-wire drop testing model head rotation in American football impacts? Head rotation is believed to cause mild traumatic brain injury (mTBI) but helmet safety standards only model head translations believed to cause severe TBI. It is unknown whether laboratory head impact models in safety standards, like twin-wire drop testing, reproduce six degree-of-freedom (6DOF) head impact biomechanics that may cause mTBI. ⋯ Initial conditions of a single field impact were highly resolved in stereo high-speed video and reconstructed in a drop test. Reconstruction results reflected aggregate trends of lower amplitude rotational velocity and higher frequency rotational acceleration in drop testing, apparently due to twin-wire constraints and the absence of a neck. These results suggest twin-wire drop testing is limited in modeling head rotation during impact, and motivate continued evaluation of head impact models to ensure helmets are tested under conditions that may cause mTBI.
-
Journal of biomechanics · Sep 2015
The region-dependent biomechanical and biochemical properties of bovine cartilaginous endplate.
Regional biomechanical and biochemical properties of bovine cartilaginous endplate (CEP) and its role in disc mechanics and nutrition were determined. The equilibrium aggregate modulus and hydraulic permeability between the central and lateral regions were examined by confined compression testing. Biochemical assays were conducted to quantify the amount of water, collagen, and glycosaminoglycan (GAG). ⋯ The lateral bovine endplate is much stiffer and may share a greater portion of the load. Compared with the nucleus pulposus (NP) and annulus fibrosus (AF), a smaller hydraulic permeability was found for the CEP in both the central and lateral regions, which could be due to its lower water content and higher collagen content. Our results suggest that the CEP may block rapid fluid exchange and solute convection, allow pressurization of the interstitial fluid, and play a significant role in nutrient supply in response to loading.
-
Journal of biomechanics · Jul 2015
Validation of airway resistance models for predicting pressure loss through anatomically realistic conducting airway replicas of adults and children.
This work describes in vitro measurement of the total pressure loss at varying flow rate through anatomically realistic conducting airway replicas of 10 children, 4 to 8 years old, and 5 adults. Experimental results were compared with analytical predictions made using published airway resistance models. For the adult replicas, the model proposed by van Ertbruggen et al. (2005. ⋯ For child replicas, the Pedley and Katz models both provided good estimation of measured pressure loss at flow rates representative of resting tidal breathing, but under predicted measured values at high inspiratory flow rate (60 L/min). The van Ertbruggen model, developed based on flow simulations performed in an adult airway model, tended to under predict measured pressure loss through the child replicas across the range of flow rates studied (2 to 60 L/min). These results are intended to provide guidance for selection of analytical pressure loss models for use in predicting airway resistance and ventilation distribution in adults and children.
-
Journal of biomechanics · Jul 2015
CNS wide simulation of flow resistance and drug transport due to spinal microanatomy.
Spinal microstructures are known to substantially affect cerebrospinal fluid patterns, yet their actual impact on flow resistance has not been quantified. Because the length scale of microanatomical aspects is below medical image resolution, their effect on flow is difficult to observe experimentally. Using a computational fluid mechanics approach, we were able to quantify the contribution of micro-anatomical aspects on cerebrospinal fluid (CSF) flow patterns and flow resistance within the entire central nervous system (CNS). ⋯ The speed of rostral drug dispersion is drastically accelerated through pulsatile flow around microanatomy induced vortices. Exploring massive parallelization on a supercomputer, the feasibility of computational drug transport studies was demonstrated. CNS-wide simulations of intrathecal drugs administration can become a practical tool for in silico design, interspecies scaling and optimization of experimental drug trials.
-
Journal of biomechanics · May 2015
Bootstrap prediction bands for cervical spine intervertebral kinematics during in vivo three-dimensional head movements.
There is substantial inter-subject variability in intervertebral range of motion (ROM) in the cervical spine. This makes it difficult to define "normal" ROM, and to assess the effects of age, injury, and surgical procedures on spine kinematics. The objective of this study was to define normal intervertebral kinematics in the cervical spine during dynamic functional loading. ⋯ For a targeted coverage of 90%, the estimated true coverage using bootstrap prediction bands averaged 86±5%, while the estimated true coverage using Gaussian point-by-point intervals averaged 56±10% over all movements and all motion segments. Bootstrap prediction bands are recommended as the standard for evaluating full ROM cervical spine kinematic curves. The data presented here can be used to identify abnormal motion in patients presenting with neck pain, to drive computational models, and to assess the biofidelity of in vitro loading paradigms.