Journal of biomechanics
-
Journal of biomechanics · Feb 2013
Altering prosthetic foot stiffness influences foot and muscle function during below-knee amputee walking: a modeling and simulation analysis.
Most prosthetic feet are designed to improve amputee gait by storing and releasing elastic energy during stance. However, how prosthetic foot stiffness influences muscle and foot function is unclear. Identifying these relationships would provide quantitative rationale for prosthetic foot prescription that may lead to improved amputee gait. ⋯ During the first half of stance, the residual leg hamstrings provided decreased support and increased propulsion. During the second half of stance, the intact leg vasti provided increased support and the residual leg rectus femoris transferred increased energy from the leg to the trunk for propulsion. These results highlight the influence prosthetic foot stiffness has on muscle and foot function throughout the gait cycle and may aid in prescribing feet of appropriate stiffness.
-
Journal of biomechanics · Feb 2013
Effects of exercise-induced low back pain on intrinsic trunk stiffness and paraspinal muscle reflexes.
The purpose of this study was to (1) compare trunk neuromuscular behavior between individuals with no history of low back pain (LBP) and individuals who experience exercise-induced LBP (eiLBP) when pain free, and (2) investigate changes in trunk neuromuscular behavior with eiLBP. Seventeen young adult males participated including eight reporting recurrent, acute eiLBP and nine control participants reporting no history of LBP. Intrinsic trunk stiffness and paraspinal muscle reflex delay were determined in both groups using sudden trunk flexion position perturbations 1-2 days following exercise when the eiLBP participants were experiencing an episode of LBP (termed post-exercise) and 4-5 days following exercise when eiLBP had subsided (termed post-recovery). ⋯ Trunk stiffness did not change (p=0.826) within the eiLBP group from post-exercise to post-recovery, but decreased 22% within the control group (p=0.002). Reflex delay decreased 11% within the eiLBP group from post-exercise to post-recovery (p=0.013), and increased 15% within the control group (p=0.006). Although the neuromuscular mechanisms associated with eiLBP and chronic LBP may differ, these results suggest that previously-reported differences in trunk neuromuscular behavior between individuals with chronic LBP and healthy controls reflect a combination of inherent differences in neuromuscular behavior between these individuals as well as changes in neuromuscular behavior elicited by pain.
-
Journal of biomechanics · Jan 2013
Case ReportsPredictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases.
Single ventricle hearts are congenital cardiovascular defects in which the heart has only one functional pumping chamber. The treatment for these conditions typically requires a three-staged operative process where Stage 1 is typically achieved by a shunt between the systemic and pulmonary arteries, and Stage 2 by connecting the superior venous return to the pulmonary circulation. Surgically, the Stage 2 circulation can be achieved through a procedure called the Hemi-Fontan, which reconstructs the right atrium and pulmonary artery to allow for an enlarged confluence with the superior vena cava. ⋯ In contrast, varying HR, PVR, and SVR led to significant changes in theses clinically relevant global parameters. Adopting a work-flow of customized virtual planning of the Hemi-Fontan procedure with patient-specific data, this study demonstrates the ability of multi-scale modeling to reproduce patient specific flow conditions under differing physiological states. Results demonstrate that the same operation performed in two different patients can lead to different hemodynamic characteristics, and that modeling can be used to uncover physiologic changes associated with different clinical conditions.
-
Journal of biomechanics · Jan 2013
ReviewThe Syncardia(™) total artificial heart: in vivo, in vitro, and computational modeling studies.
The SynCardia(™) total artificial heart (TAH) is the only FDA-approved TAH in the world. The SynCardia(™) TAH is a pneumatically driven, pulsatile system capable of flows of >9L/min. The TAH is indicated for use as a bridge to transplantation (BTT) in patients at imminent risk of death from non-reversible bi-ventricular failure. ⋯ To aid in the development of a new "pediatric," TAH an engineering methodology known as "Device Thrombogenicity Emulation (DTE)", that we have recently developed and described, is being employed. Recently, to further our engineering understanding of the TAH, as steps towards next generation designs we have: (1) assessed of the degree of platelet reactivity induced by the present clinical 70 cc TAH using a closed loop platelet activity state assay, (2) modeled the motion of the TAH pulsatile mobile diaphragm, and (3) performed fluid-structure interactions and assessment of the flow behavior through inflow and outflow regions of the TAH fitted with modern bi-leaflet heart valves. Developing a range of TAH devices will afford biventricular replacement therapy to a wide range of patients, for both short and long-term therapy.
-
Journal of biomechanics · Jan 2013
Numerical investigation of a novel aortic cannula aimed at reducing cerebral embolism during cardiovascular bypass surgery.
The generation of emboli during cardiopulmonary bypass (CPB) is profoundly affected by the hemodynamic properties of the aortic cannula used in the current study. The aim of the current work was to numerically investigate the hemodynamic efficiency and feasibility of a novel, backward suction cannula (BSC), designed to drastically reduce the potential risk for cerebral emboli (CEP). In line with the standard cannulae, the BSC provides oxygenated blood from the CPB machine through its primary lumen. ⋯ Differences between the investigated cannulae in terms of these measures were tested using analyses of variance tests (ANOVAs). Results indicate that the BSC exhibited a significant improvement of the cannula performance in terms of CEP with no significant change in the risk for other hemodynamic complications, such as hemolysis or atheroembolism (AP and IH). These findings suggest the advantageous use of the BSC in the clinical setting for its potential to diminish the risk for cerebral emboli, which presents the most pertinent cause of noncardiac complications following open heart surgery.