Journal of biomechanics
-
Journal of biomechanics · Feb 1996
A numerical investigation into factors affecting anesthetic distribution during spinal anesthesia.
The factors affecting distribution of anesthetic within the spinal column are of current interest due to recent reports of neurological injury occurring during spinal anesthesia. This paper describes a numerical model for simulating anesthetic dispersion, and applies the model to the evaluation of spinal-column size, anesthetic injection rate, and catheter orientation as factors influencing the anesthetic distribution. ⋯ Increasing injection rate is found to produce a less uniform distribution in a global sense (higher total volume of anesthetic in the 'sacral' half) but a more uniform distribution in a localized sense (lower concentrations at critical points). Finally, the anesthetic distribution is demonstrated to be highly sensitive to orientation angle at high injection rates.
-
Journal of biomechanics · Nov 1995
The biomechanics of the human patella during passive knee flexion.
The fundamental objectives of patello-femoral joint biomechanics include the determination of its kinematics and of its dynamics, as a function of given control parameters like knee flexion or applied muscle forces. On the one hand, patellar tracking provides quantitative information about the joint's stability under given loading conditions, whereas patellar force analyses can typically indicate pathological stress distributions associated for instance with abnormal tracking. The determination of this information becomes especially relevant when facing the problem of evaluating surgical procedures in terms of standard (i.e. non-pathological) knee functionality. ⋯ The contact patterns evolved from the distal part of the retropatellar articular surface to the proximal pole during progressive flexion. The lateral facet bore more pressure than the medial one, with corresponding higher stresses (hydrostatic) in the lateral compartment of the patella. The forces acting on the patella were part of the problem unknowns, thus leading to more realistic loadings for the stress analysis, which was especially important when considering the wide range of variations of the contact pressure acting on the patella during knee flexion.
-
We hypothesized that the moment arms of muscles crossing the elbow vary substantially with forearm and elbow position and that these variations could be represented using a three-dimensional computer model. Flexion/extension and pronation/supination moment arms of the brachioradialis, biceps, brachialis, pronator teres, and triceps were calculated from measurements of tendon displacement and joint angle in two anatomic specimens and were estimated using a computer model of the elbow joint. The anatomical measurements revealed that the flexion/extension moment arms varied by at least 30% over a 95 degrees range of motion. ⋯ The anatomical studies and the computer model demonstrate that the biceps flexion moment arm peaks in a more extended elbow position and has a larger peak when the forearm is supinated. Also, the peak biceps supination moment arm decreases as the elbow is extended. These results emphasize the need to account for the variation of muscle moment arms with elbow flexion and forearm position.
-
Journal of biomechanics · Apr 1993
The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.
The relationship between EMG activity and extensor moment generation in the erector spinae muscles was investigated under isometric and concentric conditions. The full-wave rectified and averaged EMG signal was recorded from skin-surface electrodes located over the belly of the erector spinae at the levels of T10 and L3, and compared with measurements of extensor moment. The effects of muscle length and contraction velocity were studied by measuring the overall curvature (theta) and rate of change of curvature (d theta/dt) of the lumbar spine in the sagittal plane, using the '3-Space Isotrak' system. ⋯ This equation was used to correct the EMG data for the effect of contraction velocity. The corrected data were then used, in conjunction with the results of the isometric calibrations, to calculate the extensor moment generated by the erector spinae muscles during bending and lifting activities. The extensor moment can itself be used to calculate the compressive force acting on the lumbar spine.
-
Intervertebral discs exhibit pronounced time-dependent deformations when subjected to load variations. These deformations are caused by fluid flow to and from the disc and by viscoelastic deformation of annulus fibres. The fluid flow is caused by differences between mechanical and osmotic pressure. ⋯ Body height variations are studied, both those related to normal diurnal rhythmicity and those related to somewhat exceptional circumstances. The normal diurnal fluid flow is found to be about +/- 40% of the disc fluid content late in the evening. Viscoelastic deformation of annulus fibres contributes approximately one quarter of the height change obtained after several hours normal activity, but dominates during the first hour.