Journal of biomechanics
-
Journal of biomechanics · Oct 2018
Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine.
This study evaluated between-session reliability of opto-electronic motion capture to measure trunk posture and three-dimensional ranges of motion (ROM). Nineteen healthy participants aged 24-74 years underwent spine curvature, pelvic tilt and trunk ROM measurements on two separate occasions. Rigid four-marker clusters were attached to the skin overlying seven spinous processes, plus single markers on pelvis landmarks. ⋯ Pelvic segment showed highest ICC values in flexion (ICC = 0.78) and total axial rotation (ICC = 0.81) trials. Furthermore, it was estimated that four or fewer repeated trials would provide good reliability for key ROM outcomes, including lumbar flexion, thoracic and lumbar lateral bending, and thoracic axial rotation. This demonstration of reliability is a necessary precursor to quantifying spine kinematics in clinical studies, including assessing changes due to clinical treatment or disease progression.
-
Journal of biomechanics · Sep 2018
The effect of follower load on the intersegmental coupled motion characteristics of the human thoracic spine: An in vitro study using entire rib cage specimens.
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. ⋯ On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.
-
Unnatural dynamics of the notorious vortex in the left ventricle is often associated with cardiac disease. Understanding how different cardiac diseases alter the flow physics in the left ventricle may therefore provide a powerful tool for disease detection. ⋯ Diastolic vortex reversal was observed in the left ventricle accompanied by an increase in viscous energy dissipation. Vortex dynamics and energy dissipation may provide useful insights on sub-optimal flow patterns in the left ventricle.
-
Journal of biomechanics · Aug 2018
Biomechanical analysis of fluid percussion model of brain injury.
Fluid percussion injury (FPI) is a widely used experimental model for studying traumatic brain injury (TBI). However, little is known about how the brain mechanically responds to fluid impacts and how the mechanical pressures/strains of the brain correlate to subsequent brain damage for rodents during FPI. Hence, we developed a numerical approach to simulate FPI experiments on rats and characterize rat brain pressure/strain responses at a high resolution. ⋯ We validated the numerical model against experimentally measured pressures from FPI. Our results indicated that brain tissues under FPI experienced high pressures, which were slightly lower (10-20%) than input saline pressure. Interestingly, FPI was a mixed focus- and diffuse-type injury model with highest strains (12%) being concentrated in the ipsilateral cortex under the fluid-impact site and diffuse strains (5-10%) being spread to the entire brain, which was different from controlled cortical impact in which high strains decreased gradually away from the impact site.
-
Journal of biomechanics · Jun 2018
Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography.
Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. ⋯ Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure.