Microvascular research
-
Microvascular research · Nov 2013
Early adverse changes in liver microvascular circulation during experimental septic shock are not linked to an absolute nitric oxide deficit.
Nitric oxide (NO) is believed to play a key role in adverse microvascular changes during sepsis. A deficit in NO has been evoked as a potential mechanism of microcirculatory deterioration in the early phase of septic shock. The aim of this study was to evaluate simultaneously and continuously both hepatic microcirculation and local NO production during early experimental sepsis. ⋯ In septic animals, whereas a fall in microcirculatory perfusion was noted as early as 2h after CLP, NO concentration remained stable and further increased after the onset of shock. At this time, inducible NO synthase was the only isoform significantly elevated. In this non-resuscitated experimental model of sepsis, an absolute liver deficit of NO could not explain the early adverse changes in the local microvascular system.
-
Microvascular research · Nov 2013
Blockade by phosphorothioate aptamers of advanced glycation end products-induced damage in cultured pericytes and endothelial cells.
Advanced glycation end products (AGEs) not only inhibit DNA synthesis of retinal pericytes, but also elicit vascular hyperpermeability, pathological angiogenesis, and thrombogenic reactions by inducing vascular endothelial growth factor (VEGF) and plasminogen activator inhibitor-1 (PAI-1) through the interaction with the receptor for AGEs (RAGE), thereby being involved in the pathogenesis of diabetic retinopathy. In this study, we screened novel phosphorothioate-modified aptamers directed against AGEs (AGEs-thioaptamers) using a combinatorial chemistry in vitro, and examined whether these aptamers could inhibit the AGE-induced damage in both retinal pericytes and human umbilical vein endothelial cells (HUVECs). We identified 11 AGEs-thioaptamers; among them, clones #4, #7s and #9s aptamers had higher binding affinity to AGEs-human serum albumin (HSA) than the others. ⋯ Quartz crystal microbalance analysis confirmed that #4s aptamer dose-dependently inhibited the binding of AGEs-HSA to RAGE. Our present study demonstrated that AGEs-thioaptamers could inhibit the harmful effects of AGEs in pericytes and HUVEC by suppressing the binding of AGEs to RAGE. Blockade by AGEs-thioaptamers of the AGEs-RAGE axis might be a novel therapeutic strategy for diabetic retinopathy.
-
Microvascular research · Nov 2013
Observational StudyAlteration of the sublingual microvascular glycocalyx in critically ill patients.
Glycocalyx degradation may contribute to microvascular dysfunction and tissue hypoperfusion during systemic inflammation and sepsis. In this observational study we evaluated the alteration of the sublingual microvascular glycocalyx in 16 healthy volunteers and 50 critically ill patients. Sidestream Dark Field images of the sublingual microcirculation were automatically analyzed by dedicated software. ⋯ A PBR of 2.76 showed the best discriminative ability towards the presence of sepsis (sensitivity: 50%, specificity: 83%; area under the receiver operating characteristic curve: 0.67, 95% CI 0.52-0.82, p=0.05). A weak positive correlation was found between PBR and heart rate (r=0.3, p=0.03). In 17 septic patients, a correlation was found between PBR and number of rolling leukocytes in post-capillary venules (RL/venule) (r=0.55, p=0.02), confirming that glycocalyx shedding enhances leukocyte-endothelium interaction.
-
Microvascular research · Nov 2013
Semi-automatic assessment of skin capillary density: proof of principle and validation.
Skin capillary density and recruitment have been proven to be relevant measures of microvascular function. Unfortunately, the assessment of skin capillary density from movie files is very time-consuming, since this is done manually. This impedes the use of this technique in large-scale studies. We aimed to develop a (semi-) automated assessment of skin capillary density. ⋯ We have developed a semi-automatic image analysis application (CapiAna) for the assessment of skin capillary density, which agrees well with the classic manual counting procedure, is time-saving, and has a better reproducibility as compared to the classic manual counting procedure. As a result, the use of skin capillaroscopy is feasible in large-scale studies, which importantly extends the possibilities to perform microcirculation research in humans.
-
Microvascular research · Nov 2013
Effect and mechanism of propofol on myocardial ischemia reperfusion injury in type 2 diabetic rats.
Propofol has been reported to have an inhibitory effect on ischemia/reperfusion (I/R) injury in various experimental models by reducing oxidative stress, protecting mitochondrial function and suppressing apoptosis. The aim of this study was to investigate the effect and mechanism of propofol on myocardial I/R injury in type 2 diabetic rats. ⋯ These data suggest that propofol can protect against myocardial ischemia-reperfusion injury in both normal and type 2 diabetic rats, possibly by attenuating endothelial cell injury and inhibiting the apoptosis of cardiomyocytes.