Microvascular research
-
Microvascular research · Sep 2014
Comparative StudyEffects of a hemoglobin-based oxygen carrier (HBOC-201) and derivatives with altered oxygen affinity and viscosity on systemic and microcirculatory variables in a top-load rat model.
The effects of a polymerized bovine hemoglobin-based oxygen carrier (HBOC) and two derivatives on arteriolar vasoactivity and tissue oxygen tension were explored by administering HBOC in a dose-response fashion to normovolemic rats. The effect of oxygen affinity (P50) and viscosity was also explored, where the P50 and viscosity of the parent compound (HBOC-201) and its modifications (MP50 and LP50A) were as follows: 40mmHg and 3.0cP (HBOC-20l); 18mmHg and 4.4cP (MP50); and 17mmHg and 12.1cP (LP50A). Anesthetized male Sprague-Dawley rats (N=32) were randomized to receive one of the HBOC solutions, and were administered four infusions that increased in concentration for each dose (2, 22, 230 and 780mg/kg, IV). ⋯ There were no significant changes in arteriolar diameters at any dose for any group. Interstitial partial pressure of oxygen (ISF PO2) remained unchanged for HBOC-201, MP50 and HSA, but LP50A caused a significant decrease in ISF PO2 compared to baseline after Doses 3 and 4. In conclusion, there was no evidence that HBOC-201 would perform better with increased oxygen affinity (40 to 18mmHg) or viscosity (3.0 to 4.4cP).
-
Microvascular research · Jul 2014
Chronic overcirculation-induced pulmonary arterial hypertension in aorto-caval shunt.
Pulmonary arterial hypertension is a common complication of congenital heart defects with left-to-right shunts. Current preclinical models do not reproduce clinical characteristics of shunt-related pulmonary hypertension. Aorto-caval shunt was firstly described as a model of right ventricle volume overload. ⋯ Histology demonstrated medial hypertrophy and small artery luminal narrowing. Chronic exposure to aorto-caval shunt is a reliable model to produce right ventricular volume overload and secondary pulmonary arterial hypertension. This model could be an alternative with low mortality and high reproducibility for investigators on the underlying mechanisms of shunt-related pulmonary hypertension.
-
Microvascular research · Jul 2014
A mathematical model for filtration and macromolecule transport across capillary walls.
Metabolic substrates, such as oxygen and glucose, are rapidly delivered to the cells of large organisms through filtration across microvessels walls. Modelling this important process is complicated by the strong coupling between flow and transport equations, which are linked through the osmotic pressure induced by the colloidal plasma proteins. The microvessel wall is a composite media with the internal glycocalyx layer exerting a strong sieving effect on macromolecules, with respect to the external layer composed by the endothelial cells. ⋯ This solution is in agreement with experimental observations, which contrary to common belief, show that flow reversal cannot occur in steady-state conditions unless the hydrostatic pressure in the lumen drops below physiologically plausible values. The observed variations of the volumetric flux and the solute mass flux in case of a significant reduction of the hydrostatic pressure at the lumen are in qualitative agreement with observed variations during detailed experiments reported in the literature. On the other hand, homogenising the microvessel wall into a single-layer membrane with equivalent properties leads to a very different distribution of pressure across the microvessel walls, not consistent with observations.
-
Edema due to capillary leak is a generalized and life threatening event in sepsis and major burns for which there is no causal treatment. Local burn wounds are an ideal model to investigate the impact of a new therapeutic agent on edema formation. We aimed to identify peptide sequences of cingulin that can attenuate stress-induced endothelial cytoskeleton disarrangement in vitro and which reduce burn-induced edema in vivo. ⋯ Xib13 improved angiogenesis, reduced edema formation and showed no side effects on other physiological parameters. Since edema formation is a serious parameter for burn conversion and is associated with survival it could provide a new treatment option for patients with burn injuries.
-
Microvascular research · May 2014
Comparative StudyEndocan is useful biomarker of survival and severity in sepsis.
Coagulation abnormalities which occur as a consequence of endothelial changes are recognized as diagnostic criteria for sepsis, but significance of these changes in the outcome prognosis and prediction of the course of sepsis is still not accurately defined. ⋯ Results of our study show that endocan can be used as strong and significant predictor of sepsis severity and outcome, perhaps even better than SOFA and APACHE II scores.