Microvascular research
-
Microvascular research · Nov 2013
Observational StudyAlteration of the sublingual microvascular glycocalyx in critically ill patients.
Glycocalyx degradation may contribute to microvascular dysfunction and tissue hypoperfusion during systemic inflammation and sepsis. In this observational study we evaluated the alteration of the sublingual microvascular glycocalyx in 16 healthy volunteers and 50 critically ill patients. Sidestream Dark Field images of the sublingual microcirculation were automatically analyzed by dedicated software. ⋯ A PBR of 2.76 showed the best discriminative ability towards the presence of sepsis (sensitivity: 50%, specificity: 83%; area under the receiver operating characteristic curve: 0.67, 95% CI 0.52-0.82, p=0.05). A weak positive correlation was found between PBR and heart rate (r=0.3, p=0.03). In 17 septic patients, a correlation was found between PBR and number of rolling leukocytes in post-capillary venules (RL/venule) (r=0.55, p=0.02), confirming that glycocalyx shedding enhances leukocyte-endothelium interaction.
-
Microvascular research · Nov 2013
Semi-automatic assessment of skin capillary density: proof of principle and validation.
Skin capillary density and recruitment have been proven to be relevant measures of microvascular function. Unfortunately, the assessment of skin capillary density from movie files is very time-consuming, since this is done manually. This impedes the use of this technique in large-scale studies. We aimed to develop a (semi-) automated assessment of skin capillary density. ⋯ We have developed a semi-automatic image analysis application (CapiAna) for the assessment of skin capillary density, which agrees well with the classic manual counting procedure, is time-saving, and has a better reproducibility as compared to the classic manual counting procedure. As a result, the use of skin capillaroscopy is feasible in large-scale studies, which importantly extends the possibilities to perform microcirculation research in humans.
-
Microvascular research · Nov 2013
Effect and mechanism of propofol on myocardial ischemia reperfusion injury in type 2 diabetic rats.
Propofol has been reported to have an inhibitory effect on ischemia/reperfusion (I/R) injury in various experimental models by reducing oxidative stress, protecting mitochondrial function and suppressing apoptosis. The aim of this study was to investigate the effect and mechanism of propofol on myocardial I/R injury in type 2 diabetic rats. ⋯ These data suggest that propofol can protect against myocardial ischemia-reperfusion injury in both normal and type 2 diabetic rats, possibly by attenuating endothelial cell injury and inhibiting the apoptosis of cardiomyocytes.
-
Microvascular research · Nov 2013
Acute, short-term hypercapnia improves microvascular oxygenation of the colon in an animal model of sepsis.
The deterioration of microcirculatory oxygenation of the gut plays a vital role in the development of sepsis. Acute hypercapnia enhances the microcirculatory oxygenation of the splanchnic region under physiological conditions, while the effect of hypercapnia under sepsis is unknown. The aim of this study was to investigate the effects of acute hypercapnia and hypercapnic acidosis on the colonic microcirculation and early cytokine response in polymicrobial sepsis. ⋯ Acute hypercapnic acidosis and buffered hypercapnia both improve splanchnic microcirculatory oxygenation in a septic animal model, thereby counteracting the adverse effect induced by sepsis. The circulating pro- and anti-inflammatory cytokine levels are not modulated after 120min of hypercapnia.
-
Thermal injuries of more than 20% total body surface area result in systemic shock with generalized edema. Burn shock is induced by a variety of mediators, mainly immunomodulative cytokines. Administration of methysergide (Met), a serotoninergic receptor blocking agent, reduces generalized edema in endotoxemia in rats. In this study we evaluated the systemic effects of Met after thermal injury. ⋯ Burnplasma transfer to healthy individuals induces leukocyte activation and plasma extravasation and this effect is reduced by administration of Met. This may be attributed to leukocyte dependent as well as independent mechanisms. Evaluation of more specific serotoninergic antagonists is required to distinguish between systemic and local effects.