Autophagy
-
Parkinson disease (PD) is a disabling, incurable disorder with increasing prevalence in the western world. In rare cases PD is caused by mutations in the genes for PINK1 (PTEN induced kinase 1) or PRKN (parkin RBR E3 ubiquitin protein ligase), which impair the selective autophagic elimination of damaged mitochondria (mitophagy). Mutations in the gene encoding LRRK2 (leucine rich repeat kinase 2) are the most common monogenic cause of PD. ⋯ A phosphomimetic RAB10 mutant showed less OPTN interaction and less translocation to depolarized mitochondria than wild-type RAB10, and failed to rescue mitophagy in LRRK2 mutant cells. These data connect LRRK2 with PINK1- and PRKN-mediated mitophagy via its substrate RAB10, and indicate that the pathogenic effects of mutations in LRRK2, PINK1 and PRKN may converge on a common pathway. Abbreviations : ACTB: actin beta; ATP5F1B: ATP synthase F1 subunit beta; CALCOCO2: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; Co-IP: co-immunoprecipitation; EBSS: Earle's balanced salt solution; GFP: green fluorescent protein; HSPD1: heat shock protein family D (Hsp60) member 1; LAMP1: lysosomal associated membrane protein 1; LRRK2: leucine rich repeat kinase 2; IF: immunofluorescence; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; OMM: outer mitochondrial membrane; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RHOT1: ras homolog family member T1; ROS: reactive oxygen species; TBK1: TANK binding kinase 1; WB: western blot.
-
Mitophagy is a vital form of autophagy for selective removal of dysfunctional or redundant mitochondria. Accumulating evidence implicates elimination of dysfunctional mitochondria as a powerful means employed by autophagy to keep the immune system in check. ⋯ In addition, we further discuss the direct and indirect evidence linking mitophagy to inflammation and autoimmunity underlying the pathogenesis of autoimmune diseases including inflammatory bowel diseases (IBD), systemic lupus erythematosus (SLE) and primary biliary cirrhosis (PBC). Abbreviations: AICD: activation induced cell death; AIM2: absent in melanoma 2; ALPL/HOPS: alkaline phosphatase, biomineralization associated; AMA: anti-mitochondrial antibodies; AMFR: autocrine motility factor receptor; ATG: autophagy-related; BCL2L13: BCL2 like 13; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain containing; CASP1: caspase 1; CD: Crohn disease; CGAS: cyclic GMP-AMP synthase; CXCL1: C-X-C motif chemokine ligand 1; DEN: diethylnitrosamine; DLAT/PDC-E2: dihydrolipoamide S-acetyltransferase; DNM1L/Drp1: dynamin 1 like; ESCRT: endosomal sorting complexes required for transport; FKBP8: FKBP prolyl isomerase 8; FUNDC1: Fun14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HPIV3: human parainfluenza virus type 3; IBD: inflammatory bowel diseases; IEC: intestinal epithelial cell; IFN: interferon; IL1B/IL-1β: interleukin 1 beta; iNK: invariant natural killer; IRGM: immunity related GTPase M; LIR: LC3-interacting region; LPS: lipopolysaccharide; LRRK2: leucine rich repeat kinase 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCH5: membrane associated ring-CH-type finger 5; MAVS: mitochondrial antiviral signaling protein; MDV: mitochondria-derived vesicle; MFN1: mitofusin 1; MHC: major histocompatibility complex; MIF: macrophage migration inhibitory factor; mtAP: mitochondrial antigen presentation; mtDNA: mitochondrial DNA; MTOR: mechanistic target of rapamycin kinase; mtROS: mitochondrial ROS; MUL1: mitochondrial E3 ubiquitin protein ligase 1; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-ĸB: nuclear factor kappa B subunit; NK: natural killer; NLR: NOD-like receptor; NLRC4: NLR family CARD domain containing 4; NLRP3: NLR family pyrin domain containing 3; OGDH: oxoglutarate dehydrogenase; OMM: outer mitochondrial membrane; OPTN: optineurin; ox: oxidized; PARK7: Parkinsonism associated deglycase; PBC: primary biliary cirrhosis; PEX13: peroxisomal biogenesis factor 13; PHB/PHB1: prohibitin; PHB2: prohibitin 2; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; PLEKHM1: pleckstrin homology and RUN domain containing M1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; RAB: member RAS oncogene family; RHEB: Ras homolog: mTORC1 binding; RIPK2: receptor interacting serine/threonine kinase 2; RLR: DDX58/RIG-I like receptor; ROS: reactive oxygen species; SBD: small bile ducts; SLC2A1/GLUT1: solute carrier family 2 member 1; SLE: systemic lupus erythematosus; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TCR: T cell receptor; TFAM: transcription factor A: mitochondrial; Th17: T helper 17; TLR9: toll like receptor 9; TMEM173/STING: transmembrane protein 173; TNF/TNF-α: tumor necrosis factor; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; WIPI: WD repeat domain: phosphoinositide interacting; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
-
Ischemic preconditioning (IPC) affords tissue protection in organs including kidneys; however, the underlying mechanism remains unclear. Here we demonstrate an important role of macroautophagy/autophagy (especially mitophagy) in the protective effect of IPC in kidneys. IPC induced autophagy in renal tubular cells in mice and suppressed subsequent renal ischemia-reperfusion injury (IRI). ⋯ Knockdown of Pink1 suppressed mitophagy and reduced the cytoprotective effect of IPC. Together, these results suggest that autophagy, especially mitophagy, plays an important role in the protective effect of IPC. Abbreviations: ACTB: actin, beta; ATG: autophagy related; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; BUN: blood urea nitrogen; CASP3: caspase 3; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; COX4I1: cytochrome c oxidase subunit 4I1; COX8: cytochrome c oxidase subunit 8; DAPI: 4',6-diamidino-2-phenylindole; DNM1L: dynamin 1 like; EGFP: enhanced green fluorescent protein; EM: electron microscopy; ER: endoplasmic reticulum; FC: floxed control; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; H-E: hematoxylin-eosin; HIF1A: hypoxia inducible factor 1 subunit alpha; HSPD1: heat shock protein family D (Hsp60) member 1; IMMT/MIC60: inner membrane mitochondrial protein; IPC: ischemic preconditioning; I-R: ischemia-reperfusion; IRI: ischemia-reperfusion injury; JC-1: 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide; KO: knockout; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; mito-QC: mito-quality control; mRFP: monomeric red fluorescent protein; NAC: N-acetylcysteine; PINK1: PTEN induced putative kinase 1; PPIB: peptidylprolyl isomerase B; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; RPTC: rat proximal tubular cells; SD: standard deviation; sIPC: simulated IPC; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling.
-
Mitochondrial dynamics is highly implicated in a plethora of cellular processes including apoptosis and mitophagy. However, little is known about the scope and precise functions of mitochondrial dynamics proteins for mitochondrial quality control and cellular homeostasis. Whether mitochondrial dynamics proteins serve in cellular processes reliant on mitochondrial fission-fusion is still not fully explored. ⋯ The recruitment of PRKN to depolarized mitochondria modulated the UPS-dependent degradation of MFN2 (mitofusin 2) and FIS1 (fission, mitochondrial 1) specifically, to further promote mitophagy. Our findings uncover a bridging role of MIEF1 integrating cell death and mitophagy, unlikely dependent on mitochondrial dynamics, implying new insights to mechanisms determining cellular fate. Abbreviations: ActD: actinomycin D; BAX: BCL2 associated X, apoptosis regulator; BAK1: BCL2 antagonist/killer 1; BCL2L1: BCL2 like 1; BMH: 1,6-bismaleimidohexane; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CHX: cycloheximide; CQ: chloroquine; CYCS: cytochrome c, somatic; DIABLO: diablo IAP-binding mitochondrial protein; DKO: double knockout; DNM1L/DRP1: dynamin 1 like; FIS1: fission, mitochondrial 1; GFP: green fluorescent protein; IP: immunoprecipitation; MFN1: mitofusin 1; MFN2: mitofusin 2; MG132: carbobenzoxy-Leu-Leu-leucinal; MIEF1/MiD51: mitochondrial elongation factor 1; MIEF2/MiD49: mitochondrial elongation factor 2; MOMP: mitochondrial outer membrane permeabilization; MTR: MitoTracker Red; OA: oligomycin plus antimycin A; OCR: oxygen consumption rate; OMM: outer mitochondrial membrane; PARP: poly(ADP-ribose) polymerase; PI: propidium iodide; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SD: standard deviation; STS: staurosporine; TNF: tumor necrosis factor; UPS: ubiquitin-proteasome system; VDAC1: voltage dependent anion channel 1.
-
The ubiquitination of mitochondrial proteins labels damaged mitochondria for degradation through mitophagy. We recently developed an in vivo system in which mitophagy is slowed by inhibiting mitochondrial division through knockout of Dnm1l/Drp1, a dynamin related GTPase that mediates mitochondrial division. Using this system, we revealed that the ubiquitination of mitochondrial proteins required SQSTM1/p62, but not the ubiquitin E3 ligase PRKN/parkin, during mitophagy. ⋯ These data suggest that mitochondrial ubiquitination is promoted by SQSTM1 independently of PINK1 and PRKN during mitophagy. PINK1 and PRKN appear to control the balance between mitochondrial division and fusion in vivo. Abbreviations: DNM1L/DRP1: dynamin 1-like; KEAP1: kelch-like ECH-associated protein 1; KO: knockout; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFN1/2: mitofusin 1/2; OPA1: OPA1, mitochondrial dynamin like GTPase; PDH: pyruvate dehydrogenase E1; PINK1: PTEN induced putative kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase.