Pathology
-
Review
SARS-CoV-2 in children: spectrum of disease, transmission and immunopathological underpinnings.
As the SARS-CoV-2 pandemic unfolds across the globe, consistent themes are emerging with regard to aspects of SARS-CoV-2 infection and its associated disease entities in children. Overall, children appear to be less frequently infected by, and affected by, SARS-CoV-2 virus and the clinical disease COVID-19. Large epidemiological studies have revealed children represent less than 2% of the total confirmed COVID-19 cases, of whom the majority experience minimal or mild disease that do not require hospitalisation. ⋯ There are several postulated theories regarding the relatively low SARS-CoV-2 morbidity and mortality seen in children, which largely relate to differences in immune responses compared to adults, as well as differences in angiotensin converting enzyme 2 distribution that potentially limits viral entry and subsequent inflammation, hypoxia and tissue injury. The recent emergence of a multisystem inflammatory syndrome bearing temporal and serological plausibility for an immune-mediated SARS-CoV-2-related disease entity is currently under investigation. This article summarises the current available data regarding SARS-CoV-2 and the paediatric population, including the spectrum of disease in children, the role of children in virus transmission, and host-virus factors that underpin the unique aspects of SARS-CoV-2 pathogenicity in children.
-
Isolation of the new pandemic virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for diagnostic and research purposes including assessment of novel therapeutics. Several primary and continuous cell lines are currently used, and new organoid and engineered cell lines are being developed for improved investigation and understanding of the human immune response to this virus. Here we review the growth of SARS-CoV-2 in reference standard cell lines, engineered cell lines and new developments in this field.
-
The first laboratory confirmed case of Coronavirus disease 2019 (COVID-19) in Australia was in Victoria on 25 January 2020 in a man returning from Wuhan city, Hubei province, the People's Republic of China. This was followed by three cases in New South Wales the following day. The Australian Government activated the Australian Health Sector Emergency Response Plan for Novel Coronavirus on 27 February 2020 in anticipation of a pandemic. ⋯ This article aims to provide a comprehensive overview of current laboratory diagnostic methods for SARS-CoV-2, including nucleic acid testing, serology, rapid antigen detection and antibody tests, virus isolation and whole genome sequencing. The relative advantages and disadvantages of the different diagnostic tests are presented, as well as their value in different clinical, infection control and public health contexts. We also describe the challenges in the provision of SARS-CoV-2 diagnostics in Australia, a country with a relatively low COVID-19 incidence in the first pandemic wave but in which prevalence could rapidly change.
-
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has significantly increased demand on laboratory throughput and reagents for nucleic acid extraction and polymerase chain reaction (PCR). Reagent shortages may limit the expansion of testing required to scale back containment measures. The aims of this study were to investigate the viability of sample pooling as a strategy for increasing test throughput and conserving PCR reagents; and to report our early experience with pooling of clinical samples. ⋯ Increased workflow complexity imparts a higher risk of errors, and requires risk mitigation strategies. Turnaround time for individual samples increased, hence urgent samples should not be pooled. Pooling is a viable strategy for high-throughput testing of SARS-CoV-2 in low-prevalence settings.