Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer
-
Sensitivity to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) and frequency of activation mutations in EGFR is lower in Caucasian than Asian non small-cell lung cancer (NSCLC) patients. Increased EGFR gene copy numbers evaluated by fluorescence in situ hybridization (FISH) has been reported as predictor of clinical benefit from EGFR-TKIs in Caucasian NSCLC patients. This study was carried out to verify whether EGFR FISH had similar performance in Japanese patients. ⋯ Frequency of EGFR FISH+ status was higher and its predictive power for TKI sensitivity was lower in this Japanese cohort than in Western NSCLC cohorts. These findings support differences in the mechanisms of EGFR pathway activation in NSCLC between Asian and Caucasian populations. Confirmation of these results in larger cohorts is warranted.
-
Circulating tumor cells (CTCs) are rare cells that originate from a malignancy and circulate freely in the peripheral blood. The ability to capture and study CTCs is an emerging field with implications for early detection, diagnosis, determining prognosis and monitoring of cancer, as well as for understanding the fundamental biology of the process of metastasis. Here, we review the development and initial clinical studies with a novel microfluidic platform for isolating these cells, the CTC-chip, and discuss its potential uses in the study of lung cancer.
-
Although mutation of the epidermal growth factor receptor (EGFR) gene is predictive for the response to EGFR-tyrosine kinase inhibitor, its prognostic impact for patients without EGFR-tyrosine kinase inhibitor treatment remains controversial. We examined for EGFR, KRAS or TP53 mutations in a consecutive large cohort of patients with lung adenocarcinoma, and evaluated their prognostic impact. ⋯ EGFR, KRAS, and TP53 gene mutations were not independently associated with the prognosis for Japanese patients with surgically treated lung adenocarcinoma.
-
Progression of non-small cell lung cancer (NSCLC) from early- to late-stage may signify the accumulation of gene mutations. An advanced-stage tumor's mutation profile may also have prognostic value, guiding treatment decisions. Mutation detection of multiple genes is limited by the low amount of deoxyribonucleic acid extracted from low-volume diagnostic lung biopsies. We explored whole genome amplification (WGA) to enable multiple molecular analyses. ⋯ In advanced-stage NSCLC, KRAS, and CMET mutations suggest poor prognosis, whereas EGFR and p53 mutations do not seem to have survival impact. Mutations in EGFR, KRAS and p53 are unlikely to be responsible for the progression of NSCLC from early- to late-stage disease. WGA may be used to expand starting deoxyribonucleic acid from low-volume lung biopsies for further analysis of advanced-stage NSCLC.
-
Multicenter Study Comparative Study Clinical Trial
Detection and localization of intraepithelial neoplasia and invasive carcinoma using fluorescence-reflectance bronchoscopy: an international, multicenter clinical trial.
The primary objective of this study was to evaluate the benefit of using a new fluorescence-reflectance imaging system, Onco-LIFE, for the detection and localization of intraepitheal neoplasia and early invasive squamous cell carcinoma. A secondary objective was to evaluate the potential use of quantitative image analysis with this device for objective classification of abnormal sites. ⋯ Using autofluorescence-reflectance bronchoscopy as an adjunct to WLB with the Onco-LIFE system improves the detection and localization of intraepitheal neoplasia and invasive carcinoma compared with WLB alone. The use of quantitative image analysis to minimize interobserver variation in grading of abnormal sites should be explored further in future prospective clinical trial.