Nanomedicine
-
Professor Robert Langer obtained his Bachelor's Degree in Chemical Engineering from Cornell University (NY, USA) in 1970. He received his Sc. D. from the Massachusetts Institute of Technology (MA, USA) in 1974. ⋯ Professor Langer has founded over 20 biotechnology companies and authored more than 1175 articles. He has over 800 issued or pending patents. Professor Langer is the most cited engineer in history.
-
Effectiveness of nanomedicines in cancer therapy is limited in part by inadequate delivery and transport in tumor interstitium. This article reviews the experimental approaches to improve nanomedicine delivery and transport in solid tumors. ⋯ We advocate the latter approach due to its ease and practicality (accomplished with standard-of-care chemotherapy, such as paclitaxel) and tumor selectivity. Examples of applying tumor priming to deliver nanomedicines and to design drug/RNAi-loaded carriers are discussed.
-
Sputum poses a critical diffusional barrier that strongly limits the efficacy of drug and gene carriers in the airways of individuals with cystic fibrosis (CF). Previous attempts to enhance particle penetration of CF sputum have focused on either reducing its barrier properties via mucolytics, or decreasing particle adhesion to sputum constituents by coating the particle surface with non-mucoadhesive polymers, including polyethylene glycol (PEG). Neither approach has enabled particles to penetrate expectorated sputum at rates previously observed for non-mucoadhesive nanoparticles in human cervicovaginal mucus. Here, we sought to investigate whether a common mucolytic, N-acetyl cysteine (NAC), in combination with dense PEG coatings on particles, can synergistically enhance particle penetration across fresh undiluted CF sputum. ⋯ NAC facilitated rapid diffusion of PEG-coated, muco-inert nanoparticles in CF sputum. Our results provide a promising strategy to improve drug and gene carrier penetration in CF sputum, offering hope for improved therapies for CF.
-
The use of nanotechnology in cell therapy and tissue engineering offers promising future perspectives for brain and spinal cord injury treatment. Stem cells have been shown to selectively target injured brain and spinal cord tissue and improve functional recovery. To allow cell detection, superparamagnetic iron-oxide nanoparticles can be used to label transplanted cells. ⋯ CNS, and particularly spinal cord, injury is accompanied by tissue damage and the formation of physical and biochemical barriers that prevent axons from regenerating. One aspect of nanomedicine is the development of biologically compatible nanofiber scaffolds that mimic the structure of the extracellular matrix and can serve as a permissive bridge for axonal regeneration or as a drug-delivery system. The incorporation of biologically active epitopes and/or the utilization of these scaffolds as stem cell carriers may further enhance their therapeutic efficacy.