Computational intelligence and neuroscience
-
Comput Intell Neurosci · Jan 2015
Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines.
Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. ⋯ Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance.
-
Comput Intell Neurosci · Jan 2014
Modeling pedestrian's conformity violation behavior: a complex network based approach.
Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. ⋯ Finally, through simulation analysis, pedestrian's illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian's conformity violation behavior will increase as the spreading rate increases.
-
Comput Intell Neurosci · Jan 2014
A tensor-product-kernel framework for multiscale neural activity decoding and control.
Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. ⋯ For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation.
-
Comput Intell Neurosci · Jan 2010
Music composition from the brain signal: representing the mental state by music.
This paper proposes a method to translate human EEG into music, so as to represent mental state by music. The arousal levels of the brain mental state and music emotion are implicitly used as the bridge between the mind world and the music. ⋯ With EEGs during various sleep stages as an example, the music generated from them had different patterns of pitch, rhythm, and tonality. 35 volunteers listened to the music pieces, and significant difference in music arousal levels was found. It implied that different mental states may be identified by the corresponding music, and so the music from EEG may be a potential tool for EEG monitoring, biofeedback therapy, and so forth.