Brain structure & function
-
Plasticity of white matter tracts is thought to be essential for cognitive development and academic skill acquisition in children. However, a dearth of high-quality diffusion tensor imaging (DTI) data measuring longitudinal changes with learning, as well as methodological difficulties in multi-time point tract identification have limited our ability to investigate plasticity of specific white matter tracts. Here, we examine learning-related changes of white matter tracts innervating inferior parietal, prefrontal and temporal regions following an intense 2-month math tutoring program. ⋯ Notably, individual differences in behavioral gains after 2 months of tutoring were specifically correlated with plasticity in the left SLF-FT tract. Our results extend previous findings of individual differences in white matter integrity, and provide important new insights into white matter plasticity related to math learning in childhood. More generally, our quantitative approach will be useful for future studies examining longitudinal changes in white matter integrity associated with cognitive skill development.
-
The present study investigated the projections of the gigantocellular reticular nucleus (Gi) and its neighbors--the dorsal paragigantocellular reticular nucleus (DPGi), the alpha/ventral part of the gigantocellular reticular nucleus (GiA/V), and the lateral paragigantocellular reticular nucleus (LPGi)--to the mouse spinal cord by injecting the anterograde tracer biotinylated dextran amine (BDA) into the Gi, DPGi, GiA/GiV, and LPGi. The Gi projected to the entire spinal cord bilaterally with an ipsilateral predominance. Its fibers traveled in both the ventral and lateral funiculi with a greater presence in the ventral funiculus. ⋯ Their terminals were present in the ventral horn with a large portion of them terminating in the motor neuron columns. The present study is the first demonstration of the termination pattern of fibers arising from the Gi, DPGi, GiA/GiV, and LPGi in the mouse spinal cord. It provides an anatomical foundation for those who are conducting spinal cord injury and locomotion related research.
-
Regardless of whether it is conceptualized as a behavioral addiction or an impulse-control disorder, internet gaming disorder (IGD) has been speculated to be associated with impaired cognitive control. Efficient cognitive behavior involves the coordinated activity of large-scale brain networks, however, whether the interactions among these networks during resting state modulated cognitive control behavior in IGD adolescents remain unclear. Twenty-eight IGD adolescents and twenty-five age-, gender-, and education-matched healthy controls participated in our study. ⋯ In addition, we identified reduced fractional anisotropy in salience network, right central executive network tracts, and between-network (the anterior cingulate cortex-right dorsolateral prefrontal cortex tracts) pathways in IGD individuals. Notably, we observed a significant correlation between the effective and structural connection from salience network to central executive network and the number of errors during incongruent condition in Stroop task in both IGD and control subjects. Our results suggested that impaired cognitive control in IGD adolescents is likely to be mediated through the abnormal interactions and structural connection between intrinsic large-scale brain networks.
-
Adequate estimation of neuroinflammatory processes following ischemic stroke is essential for better understanding of disease mechanisms, and for the development of treatment strategies. With the TSPO (18 kDa translocator protein) positron emission tomography (PET) radioligand [(11)C]PBR28, we monitored longitudinally the inflammatory response post-transient cerebral ischemia in rats, using a recently developed rat stroke model that produces isolated focal cortical infarcts with clinical relevance in size and pathophysiology. Six Sprague-Dawley rats were subjected to 90 min transient endovascular occlusion of the M2 segment of the middle cerebral artery (M2CAO). ⋯ In an additional group of animals (n = 26), immunofluorescence studies were performed with antibodies for activated microglia/monocytes (Cd11b), phagocytes (Cd68), astrocytes (glial fibrillary acidic protein) and TSPO. The TSPO immunofluorescence signal indicated reactive microgliosis post injury, corresponding to PET findings. The present clinically relevant animal model and TSPO PET ligand appear to be well suited for studies on neuroinflammation after ischemic stroke.
-
To date, brain structure and function changes in children with complex regional pain syndrome (CRPS) as a result of disease and treatment remain unknown. Here, we investigated (a) gray matter (GM) differences between patients with CRPS and healthy controls and (b) GM and functional connectivity (FC) changes in patients following intensive interdisciplinary psychophysical pain treatment. Twenty-three patients (13 females, 9 males; average age ± SD = 13.3 ± 2.5 years) and 21 healthy sex- and age-matched controls underwent magnetic resonance imaging. ⋯ Following treatment, patients had increased GM in the dlPFC, thalamus, basal ganglia, amygdala, and hippocampus, and enhanced FC between the dlPFC and the periaqueductal gray, two regions involved in descending pain modulation. Accordingly, our results provide novel evidence for GM abnormalities in sensory, motor, emotional, cognitive, and pain modulatory regions in children with CRPS. Furthermore, this is the first study to demonstrate rapid treatment-induced GM and FC changes in areas implicated in sensation, emotion, cognition, and pain modulation.